IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

Abstract

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS. Other elements such as Cu, zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb), are of concern due to their toxicological or physiological properties. The ageing of WS is traditionally performed in wooden barrels. In spite of the high quality achieved by the WS, this is a time-consuming and costly ageing technology, among other drawbacks. For these reasons, in recent years, special attention has been devoted to alternative ageing technologies, namely the application of wood fragments to WS kept in stainless steel, often combined with micro-oxygenation (MOX). Having in mind that wood ash main inorganic components are potassium (K), Ca and magnesium (Mg), but also sodium (Na) and Fe, the potential transference of these and other metals to the WS during ageing is expected. However, in spite of substantial understanding of the organic extractable compounds, little has been published on mineral elements extraction from wood to WS and even to wine, 2,3 and with the exception of a recent study of the authors focused on Fe and Cu, no data is available for chestnut wood.4 This study, developed within the Project Oxyrebrand (https://projects.iniav.pt/oxyrebrand/index.php/pt/), aimed to examine the effect of WS’s ageing with chestnut wood (Castanea sativa Mill.), considering traditional and alternative technologies, on the beverage mineral composition. A wine distillate was aged in 250 L chestnut barrels (traditional ageing) and in 50 L glass demijohns with chestnut wood staves combined with three levels of MOX and nitrogen application (alternative ageing technology), with two replicates. Sampling was carried out after 3 weeks, 2, 6, 9 and 12 months of ageing, and the WS was assessed in terms of mineral elements composition by adapting an Q-ICP-MS semi-quantitative method previously developed and validated. 5 A full mass spectrum (m/z = 6–240, omitting the mass ranges 16–18; 40, 41, 211–229) was obtained by full mass range scanning. ANOVA was performed to examine the influence of the ageing modality and ageing time on the mineral composition. At the end of the ageing essay, and for most part of the elements, no significant differences between WS from different ageing modalities were found. Ageing time had significant effect on most of the elements, with different trends and distinct magnitude of changes being observed, depending on the element. In general, the concentrations of the mineral elements found in the WS were quite low, which is positive from the WS quality point of view.

References

1 Catarino S., Curvelo-Garcia A.S., Bruno de Sousa R., 2008. Contaminant elements in wines: A review. Ciência Téc. Vitiv., 23, 3-19.
2 Pilet A., Bruno de Sousa R., Ricardo-da-Silva J.M., Catarino S., 2019. Barrel-to-barrel variation of phenolic and mineral composition of red wine. Bio Web Conf., 12,  02011.
3 Kaya A., Bruno de Sousa R., Curvelo-Garcia A.S., Ricardo-da-Silva J.R., Catarino S., 2017. Effect of wood aging on mineral composition and wine 87Sr/86Sr isotopic ratio. J. Agric. Food Chem., 65, 4766-4776.
4 Canas S., Danalache F., Anjos O., Fernandes T.A., Caldeira I., Santos N., Fargeton N., Boissier B., Catarino S., 2020. Behaviour of Low Molecular Weight Compounds, Iron and Copper of Wine Spirit Aged with Chestnut Staves under Different Levels of Micro-Oxygenation. Molecules, 25, 5266.
5 Catarino S., Curvelo-Garcia A.S., Bruno de Sousa, R., 2006. Measurements of contaminant elements of wines by inductively coupled plasma mass spectrometry: a comparison of two calibration approaches. Talanta, 70, 1073–1080.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Catarino Sofia1,2, Vasiliki Thanasi1, Ofélia Anjos3,4,5, Tiago A. Fernandes6,7, Ilda Caldeira8,9, Laurent Fargeton10, Benjamin Boissier10 and Sara Canas8,9

1LEAF-Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa

2CEFEMA – Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Universidade de Lisboa
3Instituto Politécnico de Castelo Branco, Quinta da Senhora de Mércules
4CEF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda
5Centro de Biotecnologia de Plantas da Beira Interior
6CQE, Centro de Química Estrutural, Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Universidade de Lisboa
7DCeT – Departamento de Ciências e Tecnologia, Universidade Aberta
8Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoínha
9MED – Mediterranean Institute for Agriculture, Environment and Development, Instituto de formação avançada, Universidade de Évora
10Vivelys, Domaine du Chapître

Contact the author

Keywords

wine spirit ageing, mineral composition, chestnut wood, barrel, micro-oxygenation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining.

Application of grape pomace and stem extracts on Vitis vinifera L. cv. Monastrell: Increased stilbene content of grapes and wines

Pomace and grape stems are the main solid organic waste from winery industries, resulting from the pressing and/or fermentation processes it is generated in large amounts in many parts of the world

Monferace a new “old style” for Grignolino wine, an autochthonous Italian variety: unity in diversity

Monferace project is born from an idea of 12 winegrowers willing to create a new “old style” Grignolino wine and inspired byancient winemaking techniques of this variety (1). Monferace wine is produced with 100% Grignolino grapes after 40 months of ageing, of which 24 in wooden barrels of different volumes. Grignolino is an autochthonous Italian variety cultivated in Piedmont (north-west Italy), recently indicated as a “nephew” of the famous Nebbiolo (2) and is used to produce three different DOC wines. The Monferace Grignolino is cultivated in the geographical area identified in the Aleramic Monferrato, defined by the Po and Tanaro rivers, in the heart of Piedmont and the produced wine is characterized by a high content of tannins, marked when young, that evolve over the years. Its color is generally slight ruby red and garnet red with orange highlights with ageing.

Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

The consequences of the global climate change in the vitiviniculture are revealed as a gap between phenolic and technological grape maturities, higher grape sugar concentration that leads to high wine alcohols levels, lower acidities and high pH values, among others. The unbalanced phenolic maturity caused in this scenario leads to harsh astringency and to instable colour of wines. Previous studies have reported that the addition of yeast mannoproteins (MPs) to wines may have positive effects on these two organoleptic properties due to their capability to interact with wine polyphenols [1]; however, studies about the effect of the pH on these interactions have not been carried out so far.

Influence of oak species on the differentiation of aged brandies using chemometrics approach based on phenolic compounds UHPLC fingerprints

Oak is the main material used in cooperage for making barrels and wood chips destined to aged spirits and wines. Quercus alba L., Quercus petraea L. and Quercus robur L. are three of the most commonly used oak species in cooperage companies.