IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology


Aged red wines possess phenolic composition very different from young ones due to the transformations among native grape phenolics and the formation of new polymeric polyphenols during aging process. In this work, Syrah red wines were made by different winemaking technologies, i.e., traditional fermentation on skin (total 7 days of maceration), prolonged maceration with addition of extra skins at the end of traditional fermentation (total 14 days of maceration) and prolonged maceration with addition of extra stems at the end of traditional fermentation (total 14 days of maceration). After 8 years of ageing in bottle, the structural composition of polymeric polyphenols in these wines was comprehensively analysed through different degradation methods (hydrochloric acid hydrolysis, NaOH hydrolysis and Benzyl mercaptan hydrolysis), followed by HPLC-FT-ICR-MS, HPLC/UPLC-MS analysis. The results showed that the molecules of polymeric polyphenols in the aged red wines were composed of not only proanthocyanidins but also anthocyanins, amino acids and phenolic acids. The percentages of the constitutive units of the polymeric polyphenol molecules in these wines varied considerably, being catechin (7.1 – 14.9%), epicatechin (74.5 – 78.2%), epicatechin-3-O-gallate (5.8 – 12.2%), amino acids (0.7 – 1.5%), phenolic acids (0.0 – 0.9%) anthocyanins (0.1 – 0.4%) and epigallocatechin (0.7 – 4.7%),  depending on the type of the winemaking technologies. Catechin, epicatechin and epicatechin-3-O-gallate were presented as both terminal and extension units, with the latter predominant, while amino acids, phenolic acids and anthocyanins were found to be presented exclusively as terminal units and epigallocatechin was found to be presented exclusively as extension units. Comparing with the wine made by traditional fermentation on skin, the lower phenolic acids and anthocyanins units was found in the wine made by prolonged fermentation/maceration with skin and with stem. The prolonged fermentation/maceration with skin was found to have highest amino acids units. On the other hand, different vinification technologies affected the mean polymerization degrees (mDP) of polymeric polyphenols in the aged red wines, being mDP 25.2 for the control one, mDP 13.1 for the wine made by the prolonged fermentation with skin and mDP 15.7 for the prolonged fermention with stem. These results indicated that, different winemaking technologies affect significantly the structural features of polymeric polyphenols.


Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster


Sun Baoshan1, Jian Zhao3, Tingting Yang1, Martins Patrícia2, Ramos João4 and Lingxi Li1

1School of Functional Food and Wine, Shenyang Pharmaceutical University
2Pólo Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, I.P.

3School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University
4Departamento de Enologia, Herdade do Esporão, Reguengos de Monsaraz

Contact the author


polymeric polyphenols; winemaking technology; structural composition; aged red wine


IVAS 2022 | IVES Conference Series


Related articles…

Long-term vineyard sustainability index

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment.

Innovations on red winemaking process by ultrasound technology

High power ultrasound has been recently recognized one of the most promising technologies in winemaking processes, especially after the recent OIV resolution, concerning the application of ultrasounds on crushed grapes to promote the extraction of skin compounds.

From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia / Germany. Part 1: specific GIS applications in viticulture

En vue d’une production économique de qualités des raisins optimales une connaissance des informations les plus différentes est importante. Les nouvelles technologies, telles qu’un SIG permettent de réunir les informations sur le terrain, la nature du sol, le danger d’érosion, le climat, la végétation, l’hydrographie, l’apparition de nuisible et de maladies, etc. Sur la base de cartes topographiques un SIG permet une vaste analyse, une appréciation des rapports complexes ainsi qu’une représentation cartographique. Sur la base de modélisations en trois dimensions du terrain avec le SIG, les ensembles de données saisies ainsi que leur classification au niveau local peuvent être utilisés dans la production de zonages régionaux.

Aspetti legislativi di settore: e politiche comunitarie

Sulla base del tema assegnatomi è stata forte la tentazione di addentrarmi nel labirinto della regolamentazione comunitaria. Per buona pace degli intervenuti ho ritenuto, pero, poco utile una elencazione di numeri e riferimenti normativi che saranno brevemente riassunti in una tabella (TAB 1),

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.