IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Tracing glycosidically-bound smoke taint markers from grape to wine

Tracing glycosidically-bound smoke taint markers from grape to wine

Abstract

The increasing frequency of wildfires on the West Coast of the USA is seen as a significant risk for the grape and wine industry. Research has shown that perceived smoke impact in wines correlates with increases in volatile phenols (VPs) in grapes exposed to fresh smoke. During wildfires large quantities of volatile phenols are released into the air due to the thermal degradation of lignin. Besides the detectable free forms of these VPs, a large portion of VPs are stored in the grapes as various nonvolatile glycosides, which can be enzymatically/chemically released during fermentation and wine aging. Remarkably, the mechanism of VP glycosylation is not well understood, making it challenging to predict the smoke taint potential of a particular wine by simply analyzing free VPs or their corresponding acid-labile forms. In this study, clusters of Cabernet Sauvignon grapes were exposed to known amounts of isotopic volatile phenols in a contained atmospheric system. After the exposure, the glycosylation of absorbed isotopic volatile phenols in grapes was traced and identified by UHPLC-qTOF-MS. In addition, both the free and acid-labile forms of isotopic VPs in the exposed grape were analyzed by GC-MS. Exposed grapes were also micro-fermented and the isotopic VPs’ levels of juice/must were monitored every two days until fermentation was completed. Finally, the obtained wines were analyzed by GC-MS for the free and acid-labile volatile phenols, while the related glycosides were determined by UHPLC-qTOF-MS. Grape enzyme activity showed variable ability in forming mono-, di- and trisaccharide volatile phenols when exposed to volatile phenols in this in vitro study. By tracing the hydrolysis of isotopic VP-glycosides and the levels of related VPs during micro fermentations, this study expands the knowledge of the correlation between different forms of volatile phenols and the related glycosides. 

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Yan Wen1, Oberholster Anita1 and Arias-Pérez Ignacio1

1Department of Viticulture and Enology, University of California Davis, Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA

Contact the author

Keywords

smoke taint, volatile phenols, glycosides, fermentation, tandem mass spectrometry

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influence of the “terroir” (soil, climate and wine grower) on the quality of red Grenache wines in the Rhône Valley

«L’Observatoire Grenache» est un réseau de parcelles qui a été mis en place par l’Institut Rhodanien en Vallée du Rhône sur les millésimes de 1995 à 1999. Composé de 24 parcelles de Vitis vinifera L. cv Grenache noir, ce réseau vise à étudier l’influence du terroir (sol, climat et vigneron) sur la qualité des vins. Les parcelles ont été choisies afin de représenter différentes situations géographiques et géopédologiques de la vallée du Rhône. Le matériel végétal (clone, porte-greffe), la taille (cordon de Royat), la densité et l’âge de la parcelle ont été encadrées. Ainsi les conditions de milieu (sol, climat) et les pratiques du vigneron étaient les principales sources de variations.

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.

Induction of polyphenols in seedlings of Vitis vinifera cv. Monastrell by the application of elicitors

Contamination problems arising from the use of pesticides in viticulture have raised concerns. One of the alternatives to reduce contamination is the use of elicitors, molecules capable of stimulating the natural defences of plants, promoting the production of phenolic compounds (PC) that offer protection against biotic and abiotic stress. Previous studies on Cabernet-Sauvignon seedlings demonstrated that foliar application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH) increased proteins and PC involved in grapevine defence mechanisms. However, no trials had been conducted on Monastrell seedlings, a major winegrape variety in Spain.

DNA-Free genome editing confers disease resistance in grapevine

Grapevine (Vitis Vinifera L.), one of the most important cultivated fruit crops, is facing significant challenges due to climate change. Specifically, increasing temperatures negatively impact the physiological traits and disrupt plant phenology. Additionally, increased virulence in pathogen attacks and pests leads to significant yield loss, requiring widespread application of plant protection products. Traditional agronomic practices offer only partial mitigation, requiring the development of precise and effective intervention strategies. The economic worth of viticulture has prompted continuous efforts in grapevine genetic improvement programs, traditionally involving conventional breeding and clonal selection that, however, are complex and time-consuming approaches.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the whole plant. Rootstocks are an important way of adapting to environmental conditions while conserving the typical features of scion varieties. We can exploit the large diversity of rootstocks used worldwide to aid this adaptation. The aim of this study was to characterise rootstock regulation of scion mineral status and its relation with scion development.