IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Tracing glycosidically-bound smoke taint markers from grape to wine

Tracing glycosidically-bound smoke taint markers from grape to wine

Abstract

The increasing frequency of wildfires on the West Coast of the USA is seen as a significant risk for the grape and wine industry. Research has shown that perceived smoke impact in wines correlates with increases in volatile phenols (VPs) in grapes exposed to fresh smoke. During wildfires large quantities of volatile phenols are released into the air due to the thermal degradation of lignin. Besides the detectable free forms of these VPs, a large portion of VPs are stored in the grapes as various nonvolatile glycosides, which can be enzymatically/chemically released during fermentation and wine aging. Remarkably, the mechanism of VP glycosylation is not well understood, making it challenging to predict the smoke taint potential of a particular wine by simply analyzing free VPs or their corresponding acid-labile forms. In this study, clusters of Cabernet Sauvignon grapes were exposed to known amounts of isotopic volatile phenols in a contained atmospheric system. After the exposure, the glycosylation of absorbed isotopic volatile phenols in grapes was traced and identified by UHPLC-qTOF-MS. In addition, both the free and acid-labile forms of isotopic VPs in the exposed grape were analyzed by GC-MS. Exposed grapes were also micro-fermented and the isotopic VPs’ levels of juice/must were monitored every two days until fermentation was completed. Finally, the obtained wines were analyzed by GC-MS for the free and acid-labile volatile phenols, while the related glycosides were determined by UHPLC-qTOF-MS. Grape enzyme activity showed variable ability in forming mono-, di- and trisaccharide volatile phenols when exposed to volatile phenols in this in vitro study. By tracing the hydrolysis of isotopic VP-glycosides and the levels of related VPs during micro fermentations, this study expands the knowledge of the correlation between different forms of volatile phenols and the related glycosides. 

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Yan Wen1, Oberholster Anita1 and Arias-Pérez Ignacio1

1Department of Viticulture and Enology, University of California Davis, Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA

Contact the author

Keywords

smoke taint, volatile phenols, glycosides, fermentation, tandem mass spectrometry

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.

Unraveling the role of grape cell wall in shaping the fermentation rate, the polyphenolic profile and quality of red wines from disease-resistant and drought-tolerant grapes in Occitanie varietal selection

Climate change and an evolving environmental and societal context call for the exploration of disease-resistant and/or drought-adapted grape varieties that meet the demands of consumers and society.

The influence of terroir on the quality of wine of the Cahors A.O.C

Dans le but d’améliorer la qualité et la typicité des vins de l’Appellation d’0rigine Contrôlée CAHORS, une étude a été réalisée afin de mettre en évidence l’adéquation Cépage-Terroir- Qualité du vin.
Selon la méthodologie proposée par MORLAT et ASSELIN (1992), neuf unités terroirs ont été déterminées. Sur chacune, des parcelles de référence homogènes quant au matériel végétal Cot ou Malbec ( cépage principal de cette appellation greffé sur S04, et aux méthodes culturales, ont été suivies au niveau agronomique et œnologique (GARCIA et al., 1996).

Biotype diversity within the autochthonous ‘Bobal’ grapevine variety

Bobal is the second most widely grown Spanish red grape variety (54,165 has), mainly cultivated in the Valencian Community and especially, in Utiel-Requena region (about 67% of 34,000 has). In this study, agronomic and enological parameters were determined in 98 biotypes selected during 2018 and 2019 in more than 50 vineyards over 50 years-old in the Utiel-Requena region. Moreover, a multi-criteria approach considering temperature and rainfall (Fig. 1A), among other parameters, was made to establish three different zones within the region (Fig. 1B), where in the future the selected biotypes will evaluated. In fact, in 2020, 4 replicates and 12 vines per biotype were planted in an experimental vineyard to preserve this important intra-cultivar diversity.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.