IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Tracing glycosidically-bound smoke taint markers from grape to wine

Tracing glycosidically-bound smoke taint markers from grape to wine

Abstract

The increasing frequency of wildfires on the West Coast of the USA is seen as a significant risk for the grape and wine industry. Research has shown that perceived smoke impact in wines correlates with increases in volatile phenols (VPs) in grapes exposed to fresh smoke. During wildfires large quantities of volatile phenols are released into the air due to the thermal degradation of lignin. Besides the detectable free forms of these VPs, a large portion of VPs are stored in the grapes as various nonvolatile glycosides, which can be enzymatically/chemically released during fermentation and wine aging. Remarkably, the mechanism of VP glycosylation is not well understood, making it challenging to predict the smoke taint potential of a particular wine by simply analyzing free VPs or their corresponding acid-labile forms. In this study, clusters of Cabernet Sauvignon grapes were exposed to known amounts of isotopic volatile phenols in a contained atmospheric system. After the exposure, the glycosylation of absorbed isotopic volatile phenols in grapes was traced and identified by UHPLC-qTOF-MS. In addition, both the free and acid-labile forms of isotopic VPs in the exposed grape were analyzed by GC-MS. Exposed grapes were also micro-fermented and the isotopic VPs’ levels of juice/must were monitored every two days until fermentation was completed. Finally, the obtained wines were analyzed by GC-MS for the free and acid-labile volatile phenols, while the related glycosides were determined by UHPLC-qTOF-MS. Grape enzyme activity showed variable ability in forming mono-, di- and trisaccharide volatile phenols when exposed to volatile phenols in this in vitro study. By tracing the hydrolysis of isotopic VP-glycosides and the levels of related VPs during micro fermentations, this study expands the knowledge of the correlation between different forms of volatile phenols and the related glycosides. 

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Yan Wen1, Oberholster Anita1 and Arias-Pérez Ignacio1

1Department of Viticulture and Enology, University of California Davis, Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA

Contact the author

Keywords

smoke taint, volatile phenols, glycosides, fermentation, tandem mass spectrometry

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

Smart microgrid: how to reduce costs and CO2 emissions in wineries and vineyards

The wine sector is greatly threatened by climate change, but is also one of its contributors.

Relationships between berry quality and climatic variability in grapevine cultivars from Piedmont

A major topic in viticultural research is the analysis of the relationships between climate on one side, and grape and wine quality on the other. It is well known that climatic conditions

Phloem anatomy traits predict maximum sugar accumulation rates

Heat and water stress can accelerate berry sugar accumulation and lead to excessive sugar-to-acid ratios at harvest, producing bland, overly-alcoholic wines. Selecting grapevines for slower sugar accumulation could help maintain wine quality under future, hotter conditions, but these efforts have been stymied by our limited understanding of the traits determining sugar accumulation rates. Here, we measured traits characterizing the structure and anatomy of the sugar transport system – the phloem – in 16 winegrape cultivars and tested for relationships with sugar accumulation rates and cultivar climate classifications.

The importance of free trade agreements and non tariffs measures in a context of resurgent retaliatory trade measures against wine

Most of the issues surrounding trade in wine and spirits focus on the fight against non-tariff measures.