IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenolic acid characterization in new varieties descended from Monastrell.

Phenolic acid characterization in new varieties descended from Monastrell.

Abstract

Phenolic acids are phytochemicals that are expansively distributed in daily food intake. Phenolic acids are involved in various physiological activities, such as nutrient uptake, enzyme activity, protein synthesis, photosynthesis, and cytoskeleton structure in seeds, leaves, roots, and stems. Also exhibit antibacterial, antiviral, anticarcinogenic, anti-inflammatory, and vasodilatory activities due to their antioxidant property.
Climatic conditions are generally believed to largely determine the formation of specific wine characteristics of certain grape varieties. In addition, a continuous increase in global temperature is responsible for a significant decrease in wine quality since excessive sugar contents result in a high alcohol content, low acidity, imperfect colour and negative effects on the flavour of wine due to the uncoupling of ripening from phenolic compound production (delayed) and to technological processing (accelerated). By this reason, our research centre (IMIDA), has carried out a genetic improvement program with the Monastrell variety, in order to obtain improved and adapted varieties. In this line, Monastrell has been crossed with others such as Cabernet Sauvignon or Syrah (MC80, MC98, MS10, MC18, MC4 and MS104).
This study represents the first data of phenolic acid composition of new varieties obtained from crosses with Monastrell. Phenolic acids are divided into hydroxy-benzoic (HBA) and hydroxycinnamic (HCA). The main HBA acids present in juices and wines are protocatechuic, vanillin, gallic and syringic, and the main HCA are p-coumaric, caffeic, ferulic, and cis and trans cinnamic acid: caftaric, cutaric and fertaric.
During two consecutive seasons (2020 and 2021) the profile of phenolic acids from Monastrell and six new varieties have been studied in grapes and wines. The metabolites analysed were gallic, protocatechuic, vanillin, syringic, coumaric, caffeic, ferulic, caftaric and cutaric acids. MC80, MC98 and MS10 obtained high concentrations of these phenolic acids in their grapes and wines compared to Monastrell variety.
In short, these new varieties have higher concentrations in phenolic acids compared to Monastrell so given their potential health benefits, phenolic acids have attracted considerable research interest. Therefore, these new varieties could have an interesting point of view in human health due to their rich nutrients in their wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Moreno-Olivares Juan Daniel1, Paladines-Quezada Diego Fernando1, Giménez-Bañón María José1, Bleda-Sánchez Juan Antonio1, Fernández-Fernández José Ignacio1 and Gil-Muñoz Rocío1

1Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA) 

Contact the author

Keywords

Hybrids/ phenolic acids/ health benefits/ wines/ grapes

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Sensory and consumer perceptions, and consumption barriers of low and no-alcohol wines in Trentino/Alto Adige

The growing demand for non-alcoholic beverages, driven by health-conscious consumers and shifting social norms, has positioned dealcoholized wines as a promising alternative in the global beverage industry (Akhtar et al., 2025, in press; Kakroo, 2024).

Influence of a spontaneous cover crop on the vineyard and soil erosion under Mediterranean climate

Sixty five % of the agricultural area of the Basque Country located in the DO Ca Rioja corresponds to vineyards. More than 40% of it has an average slope greater than 10%, which makes it sensitive to erosive processes. Furthermore, it is foreseeable that extreme weather events (storms, hail, extreme heat and cold, etc.) will be favored due to climate change. Cover cropping can mitigate this risk, and therefore the objective of this work is to evaluate the impact that a vegetable cover has on the agronomic behavior of the vineyard, the quality of the grape and soil erosion. For this, a trial has been carried out with a Graciano variety vineyard with a slope between 10% -20% during the years 2020 and 2021. Conventional tillage management in the area has been compared (4-6 passes per year of tillage machinery) versus spontaneous vegetation cover management in the vineyard. This implies not tilling and allowing the grass of the land to colonize the range between the lines of vines, controlling their height through 1-3 mowing passes per year, always trying to affect the surface of the land as little as possible. The vegetative growth, yield and quality of the grape and wine was measured. Furthermore, erosion has been measured using Gerlasch boxes. The yield was lower in the second year of the trial in the cover crop treatment, but erosion was significantly reduced.

Addition of Malvasia di Candia Aromatica must and marcs to Golden Ale beer wort to obtain different Italian Grape Ales

Nowadays, the recovery of secondary resources of wine industry is insufficient and the developing of new products and adjuvants from secondary raw materials could become a relevant sector of research. The re-use of byproducts derived from winemaking could improve the sustainability of wine industry and give additional value to other food industries