IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenolic acid characterization in new varieties descended from Monastrell.

Phenolic acid characterization in new varieties descended from Monastrell.

Abstract

Phenolic acids are phytochemicals that are expansively distributed in daily food intake. Phenolic acids are involved in various physiological activities, such as nutrient uptake, enzyme activity, protein synthesis, photosynthesis, and cytoskeleton structure in seeds, leaves, roots, and stems. Also exhibit antibacterial, antiviral, anticarcinogenic, anti-inflammatory, and vasodilatory activities due to their antioxidant property.
Climatic conditions are generally believed to largely determine the formation of specific wine characteristics of certain grape varieties. In addition, a continuous increase in global temperature is responsible for a significant decrease in wine quality since excessive sugar contents result in a high alcohol content, low acidity, imperfect colour and negative effects on the flavour of wine due to the uncoupling of ripening from phenolic compound production (delayed) and to technological processing (accelerated). By this reason, our research centre (IMIDA), has carried out a genetic improvement program with the Monastrell variety, in order to obtain improved and adapted varieties. In this line, Monastrell has been crossed with others such as Cabernet Sauvignon or Syrah (MC80, MC98, MS10, MC18, MC4 and MS104).
This study represents the first data of phenolic acid composition of new varieties obtained from crosses with Monastrell. Phenolic acids are divided into hydroxy-benzoic (HBA) and hydroxycinnamic (HCA). The main HBA acids present in juices and wines are protocatechuic, vanillin, gallic and syringic, and the main HCA are p-coumaric, caffeic, ferulic, and cis and trans cinnamic acid: caftaric, cutaric and fertaric.
During two consecutive seasons (2020 and 2021) the profile of phenolic acids from Monastrell and six new varieties have been studied in grapes and wines. The metabolites analysed were gallic, protocatechuic, vanillin, syringic, coumaric, caffeic, ferulic, caftaric and cutaric acids. MC80, MC98 and MS10 obtained high concentrations of these phenolic acids in their grapes and wines compared to Monastrell variety.
In short, these new varieties have higher concentrations in phenolic acids compared to Monastrell so given their potential health benefits, phenolic acids have attracted considerable research interest. Therefore, these new varieties could have an interesting point of view in human health due to their rich nutrients in their wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Moreno-Olivares Juan Daniel1, Paladines-Quezada Diego Fernando1, Giménez-Bañón María José1, Bleda-Sánchez Juan Antonio1, Fernández-Fernández José Ignacio1 and Gil-Muñoz Rocío1

1Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA) 

Contact the author

Keywords

Hybrids/ phenolic acids/ health benefits/ wines/ grapes

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Influence of trellis system and shoot density in yield and grape composition of a vineyard of Cabernet Sauvignon, in warm climate

In vineyards grown in warm areas, it is usual that the stage of maturity of the grapes is fast and easily reach a high concentration of sugar and low acidity, but not a adequate phenolic maturation. The geometry of the trellis system and the shoot density can modify the microclimate of the cluster and, therefore, the maturation process.

Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

La région viticole de San Juan (Argentine) est marquée par des températures très élevées et des variations diurnes faibles. La valorisation de la connaissance de cet environnement et de ses interactions avec le fonctionnement de la vigne et le lien au vin passent par l’étude de ses terroirs et de leur caractérisation. Le point de départ de ce travail est l’étude des zones mésoclimatiques aptes à la culture de la vigne de la Province de San Juan et à la caractérisation des sols de cette même région. L’objectif est de définir le potentiel vitivinicole des zones considérées.

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.