IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenolic acid characterization in new varieties descended from Monastrell.

Phenolic acid characterization in new varieties descended from Monastrell.

Abstract

Phenolic acids are phytochemicals that are expansively distributed in daily food intake. Phenolic acids are involved in various physiological activities, such as nutrient uptake, enzyme activity, protein synthesis, photosynthesis, and cytoskeleton structure in seeds, leaves, roots, and stems. Also exhibit antibacterial, antiviral, anticarcinogenic, anti-inflammatory, and vasodilatory activities due to their antioxidant property.
Climatic conditions are generally believed to largely determine the formation of specific wine characteristics of certain grape varieties. In addition, a continuous increase in global temperature is responsible for a significant decrease in wine quality since excessive sugar contents result in a high alcohol content, low acidity, imperfect colour and negative effects on the flavour of wine due to the uncoupling of ripening from phenolic compound production (delayed) and to technological processing (accelerated). By this reason, our research centre (IMIDA), has carried out a genetic improvement program with the Monastrell variety, in order to obtain improved and adapted varieties. In this line, Monastrell has been crossed with others such as Cabernet Sauvignon or Syrah (MC80, MC98, MS10, MC18, MC4 and MS104).
This study represents the first data of phenolic acid composition of new varieties obtained from crosses with Monastrell. Phenolic acids are divided into hydroxy-benzoic (HBA) and hydroxycinnamic (HCA). The main HBA acids present in juices and wines are protocatechuic, vanillin, gallic and syringic, and the main HCA are p-coumaric, caffeic, ferulic, and cis and trans cinnamic acid: caftaric, cutaric and fertaric.
During two consecutive seasons (2020 and 2021) the profile of phenolic acids from Monastrell and six new varieties have been studied in grapes and wines. The metabolites analysed were gallic, protocatechuic, vanillin, syringic, coumaric, caffeic, ferulic, caftaric and cutaric acids. MC80, MC98 and MS10 obtained high concentrations of these phenolic acids in their grapes and wines compared to Monastrell variety.
In short, these new varieties have higher concentrations in phenolic acids compared to Monastrell so given their potential health benefits, phenolic acids have attracted considerable research interest. Therefore, these new varieties could have an interesting point of view in human health due to their rich nutrients in their wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Moreno-Olivares Juan Daniel1, Paladines-Quezada Diego Fernando1, Giménez-Bañón María José1, Bleda-Sánchez Juan Antonio1, Fernández-Fernández José Ignacio1 and Gil-Muñoz Rocío1

1Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA) 

Contact the author

Keywords

Hybrids/ phenolic acids/ health benefits/ wines/ grapes

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Evolution of oak barrels C-glucosidic ellagitannins

During oak wood contact, wine undergoes important modifications that modulate its organoleptic quality and complexity, including its aroma, structure, astringency, bitterness and color. Vescalagin and castalagin are the two main C-glucosidic ellagitannins found in oak wood used for wine aging wood but lyxose/xylose derivatives (grandinin and roburin e) and dimeric forms (roburins a,b, c and d) are also present. The presence of several hydroxyl groups in the ortho-positions at the periphery of the structure of the ellagitannin isomers allows these molecules to undergo oxidation or condensation reactions with other compounds.

Distinguishing of red wines from Northwest China by colour-flavour related physico-chemical indexes

Aim: Northwest China occupies an important position in China’s wine regions due to its superior geographical conditions with dry climate and sufficient sunlight. In this work, we aimed to investigate the physico-chemical colour and flavour characteristics of red wine in Northwest China.

The use of zirconia dioxide enclosed in a metallic cage for the stabilisation of Chardonnay white wine

White wines are commonly stabilised by removing the heat unstable proteins through adsorption by bentonite, an effective but inefficient wine processing step. Alternative absorbents are thus sought and zirconium dioxide (zirconia) is recognised as a promising candidate.