IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenolic acid characterization in new varieties descended from Monastrell.

Phenolic acid characterization in new varieties descended from Monastrell.

Abstract

Phenolic acids are phytochemicals that are expansively distributed in daily food intake. Phenolic acids are involved in various physiological activities, such as nutrient uptake, enzyme activity, protein synthesis, photosynthesis, and cytoskeleton structure in seeds, leaves, roots, and stems. Also exhibit antibacterial, antiviral, anticarcinogenic, anti-inflammatory, and vasodilatory activities due to their antioxidant property.
Climatic conditions are generally believed to largely determine the formation of specific wine characteristics of certain grape varieties. In addition, a continuous increase in global temperature is responsible for a significant decrease in wine quality since excessive sugar contents result in a high alcohol content, low acidity, imperfect colour and negative effects on the flavour of wine due to the uncoupling of ripening from phenolic compound production (delayed) and to technological processing (accelerated). By this reason, our research centre (IMIDA), has carried out a genetic improvement program with the Monastrell variety, in order to obtain improved and adapted varieties. In this line, Monastrell has been crossed with others such as Cabernet Sauvignon or Syrah (MC80, MC98, MS10, MC18, MC4 and MS104).
This study represents the first data of phenolic acid composition of new varieties obtained from crosses with Monastrell. Phenolic acids are divided into hydroxy-benzoic (HBA) and hydroxycinnamic (HCA). The main HBA acids present in juices and wines are protocatechuic, vanillin, gallic and syringic, and the main HCA are p-coumaric, caffeic, ferulic, and cis and trans cinnamic acid: caftaric, cutaric and fertaric.
During two consecutive seasons (2020 and 2021) the profile of phenolic acids from Monastrell and six new varieties have been studied in grapes and wines. The metabolites analysed were gallic, protocatechuic, vanillin, syringic, coumaric, caffeic, ferulic, caftaric and cutaric acids. MC80, MC98 and MS10 obtained high concentrations of these phenolic acids in their grapes and wines compared to Monastrell variety.
In short, these new varieties have higher concentrations in phenolic acids compared to Monastrell so given their potential health benefits, phenolic acids have attracted considerable research interest. Therefore, these new varieties could have an interesting point of view in human health due to their rich nutrients in their wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Moreno-Olivares Juan Daniel1, Paladines-Quezada Diego Fernando1, Giménez-Bañón María José1, Bleda-Sánchez Juan Antonio1, Fernández-Fernández José Ignacio1 and Gil-Muñoz Rocío1

1Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA) 

Contact the author

Keywords

Hybrids/ phenolic acids/ health benefits/ wines/ grapes

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

El viñedo en Lanzarote y el Archipiélago Canario

La isla de Lanzarote, primera en ser ocupada en los albores del siglo XV, es la única del archipiélago, junto con Fuerteventura, que no produjo vino. Ocasionalmente hubo algún parral para el consumo

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction

Identifying research opportunities at Douro Demarcated Region

The Douro Demarcated Region, in Northern Portugal, offers outstanding wines with unique characteristics. Due to the today’s globalized marketplace, local producers often need to further develop their cultivation techniques to remain competitive. The Association of Viticultural Development in the Douro Valley (ADVID) works as a unit of experimentation, offering services and training to meet the demands of the Douro’s vitiviniculturists.