IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Composition and molar mass distribution of different must and wine colloids

Composition and molar mass distribution of different must and wine colloids

Abstract

A major problem for winemakers is the formation of proteinaceous haze after bottling. Although the exact mechanisms remain unclear, this haze is formed by unfolding and agglomeration of grape proteins, being additionally influenced by numerous further factors. For instance, increased levels of polyphenols and sulfate ions, high pH and ionic strength, and increased storage temperatures have been discussed to promote haze formation. In contrast, organic acids and polysaccharides appear to inhibit protein agglomeration (Albuquerque et al. 2021). To avoid haze formation, winemakers use bentonite to reduce protein levels in the wine before bottling. However, the bentonite treatment imposes negative side effects such as losses in wine quantity and quality, as well as costs of bentonite waste disposal (van Sluyter et al. 2015). To better understand haze formation and to find alternative procedures for protein removal e.g. by enzymatic treatments, detailed insights into the composition of the wine colloids might be helpful.
Prior to characterization, colloids were isolated from five different musts (four varieties from five vineyards, three with pectinase treatment) and their corresponding wines by ultrafiltration (10 kDa cut-off) and freeze-drying. Protein and carbohydrate composition were determined after hydrolysis by ion chromatography and high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), respectively. Molar mass distribution of colloids was determined by size exclusion chromatography with multi angle light scattering in combination with an UV and RI detector (SEC-UV-MALS-RI).
Colloids were found to contain a wide range of 8.9 to 67.1 g protein and 28.1 to 78.0 g carbohydrates per 100 g dry matter. Thus, protein concentrations in must and wine were been between 0.06 and 0.40 g/L and carbohydrate concentrations between 0.17 and 0.65 g/L. While there were just minor differences in the amino acid composition between the musts and wines, the carbohydrate composition was different in the samples. For instance, arabinose and galactose were the main sugars found in all hydrolyzed must colloids, while galacturonic acid was present in higher amounts in those not treated with pectinase. After fermentation, mannose was found to be the main sugar in hydrolyzed wine colloids. SEC-UV-MALS-RI showed that the colloids contained three main fractions. Two carbohydrate-rich fractions with average molar masses from 931 to 22,617 kDa and from 80 to 495 kDa as well as a proteinaceous fraction with an average molar mass between 16 to 44 kDa.
Our results indicate that colloid concentration and composition in wine is heavily influenced by variety, vineyard and oenological practices. The isolated colloids and the analytical methods will in the future be used to screen for enzyme preparations suitable to degrade proteins in must and wine to avoid haze formation.

References

Albuquerque, Wendell; Seidel, Leif; Zorn, Holger; Will, Frank; Gand, Martin (2021): Haze Formation and the Challenges for Peptidases in Wine Protein Fining. In: Journal of Agricultural and Food Chemistry 69, S. 14402–14414.
van Sluyter, Steven C.; McRae, Jacqui M.; Falconer, Robert J.; Smith, Paul A.; Bacic, Antony; Waters, Elizabeth J.; Marangon, Matteo (2015): Wine Protein Haze: Mechanisms of Formation and Advances in Prevention. In: Journal of Agricultural and Food Chemistry 63 (16), S. 4020–4030.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Seidel Leif1, Albuquerque Wendell2, Happel Katharina3, Gand Martin2, Zorn Holger2,3, Schweiggert Ralf1 and Will Frank1

1Department of Beverage Research, Geisenheim University
2Institute of Food Chemistry and Food Biotechnology, Justus Liebig Giessen 
3Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany

Contact the author

Keywords

wine colloids, proteins, carbohydrates, molar mass

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Lean management to improve sustainability in wine sector: an exploratory study in the Prosecco DOC appellation

The contemporary wine sector confronts a formidable array of challenges, including burgeoning production costs and the constricted availability of natural resources. Heightened consumer awareness regarding sustainability issues further compounds these pressures, compelling companies to adopt more judicious resource utilization strategies. In response to these imperatives, there is a growing recognition of the need to overhaul production methodologies within the wine industry with a view to minimizing inputs and eliminating waste.

Innovation in pre- and post-harvest biocontrol: novel strategies against Botrytis cinerea for grape preservation

Driven by the demand for sustainable agriculture, biocontrol is emerging as a crucial alternative to chemical fungicides for crop protection.

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.

Studio per la caratterizzazione delle produzioni vitivinicole dell’area del Barbera d’Asti DOC

Il Barbera rappresenta sicuramente uno dei più importanti vitigni autoctoni del Piemonte occu­pando circa il 50% della superficie vitata regionale. Esso è ancora diffuso su un’area molto vasta, che si estende per oltre 200.000 ha, dando origine a diverse produzioni vinicole tutelate da denominazioni d’origine.

Microbiome, disease-resistant varieties, and wine quality

The development of interspecific hybrid varieties (ihvs) resistant to diseases such as powdery mildew and downy mildew allows for a decrease in the use of inputs in vineyards. In this pers-pective, ihvs represent a response to societal demand for reducing environmental impact and are increasingly used in viticulture. At the same time, wines resulting from so-called sponta-neous fermentations, based on indigenous flora, have recently gained popularity.