IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Composition and molar mass distribution of different must and wine colloids

Composition and molar mass distribution of different must and wine colloids

Abstract

A major problem for winemakers is the formation of proteinaceous haze after bottling. Although the exact mechanisms remain unclear, this haze is formed by unfolding and agglomeration of grape proteins, being additionally influenced by numerous further factors. For instance, increased levels of polyphenols and sulfate ions, high pH and ionic strength, and increased storage temperatures have been discussed to promote haze formation. In contrast, organic acids and polysaccharides appear to inhibit protein agglomeration (Albuquerque et al. 2021). To avoid haze formation, winemakers use bentonite to reduce protein levels in the wine before bottling. However, the bentonite treatment imposes negative side effects such as losses in wine quantity and quality, as well as costs of bentonite waste disposal (van Sluyter et al. 2015). To better understand haze formation and to find alternative procedures for protein removal e.g. by enzymatic treatments, detailed insights into the composition of the wine colloids might be helpful.
Prior to characterization, colloids were isolated from five different musts (four varieties from five vineyards, three with pectinase treatment) and their corresponding wines by ultrafiltration (10 kDa cut-off) and freeze-drying. Protein and carbohydrate composition were determined after hydrolysis by ion chromatography and high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), respectively. Molar mass distribution of colloids was determined by size exclusion chromatography with multi angle light scattering in combination with an UV and RI detector (SEC-UV-MALS-RI).
Colloids were found to contain a wide range of 8.9 to 67.1 g protein and 28.1 to 78.0 g carbohydrates per 100 g dry matter. Thus, protein concentrations in must and wine were been between 0.06 and 0.40 g/L and carbohydrate concentrations between 0.17 and 0.65 g/L. While there were just minor differences in the amino acid composition between the musts and wines, the carbohydrate composition was different in the samples. For instance, arabinose and galactose were the main sugars found in all hydrolyzed must colloids, while galacturonic acid was present in higher amounts in those not treated with pectinase. After fermentation, mannose was found to be the main sugar in hydrolyzed wine colloids. SEC-UV-MALS-RI showed that the colloids contained three main fractions. Two carbohydrate-rich fractions with average molar masses from 931 to 22,617 kDa and from 80 to 495 kDa as well as a proteinaceous fraction with an average molar mass between 16 to 44 kDa.
Our results indicate that colloid concentration and composition in wine is heavily influenced by variety, vineyard and oenological practices. The isolated colloids and the analytical methods will in the future be used to screen for enzyme preparations suitable to degrade proteins in must and wine to avoid haze formation.

References

Albuquerque, Wendell; Seidel, Leif; Zorn, Holger; Will, Frank; Gand, Martin (2021): Haze Formation and the Challenges for Peptidases in Wine Protein Fining. In: Journal of Agricultural and Food Chemistry 69, S. 14402–14414.
van Sluyter, Steven C.; McRae, Jacqui M.; Falconer, Robert J.; Smith, Paul A.; Bacic, Antony; Waters, Elizabeth J.; Marangon, Matteo (2015): Wine Protein Haze: Mechanisms of Formation and Advances in Prevention. In: Journal of Agricultural and Food Chemistry 63 (16), S. 4020–4030.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Seidel Leif1, Albuquerque Wendell2, Happel Katharina3, Gand Martin2, Zorn Holger2,3, Schweiggert Ralf1 and Will Frank1

1Department of Beverage Research, Geisenheim University
2Institute of Food Chemistry and Food Biotechnology, Justus Liebig Giessen 
3Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany

Contact the author

Keywords

wine colloids, proteins, carbohydrates, molar mass

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

La caracterización de los moscateles

Ya en 1964 GIOVANNI DALMASSO et alii describiendo el Moscato bianco (12) ponían de manifiesto la dificultad realmente ardua en descubrir “si no todas, por lo menos las más importantes variedades que llevan el nombre de Moscateles

Oenological potential of wines and agronomical characterisation of grapes from five white resistant Italian varieties at Serra Gaúcha, Southern Brazil

Rio grande do sul is the main grape producing state in Brazil, with the largest wine-growing area, responsible by 90% of the national production of wines and grape juices. Serra Gaúcha is the main vitivinicultural region, where around 15% of the area is destined to produce wines from vitis vinifera L. grapes. This region presents high rainfall during the grape maturation cycle, a factor that leads to great risk of attacks by fungal pathogens. the use of resistant varieties can reduce the cost and quantity of spraying, improving wine quality, focusing on a sustainable vitiviniculture.

Behavior of disease resistant grapevine varieties to downy mildew (Plasmopara viticola) infections in the Castelli Romani area (Central Italy)

At CREA – Centro di Ricerca di Viticoltura ed Enologia, based in Velletri (RM), an experimental vineyard including 10 downy mildew resistent/tolerant grape varieties and two susceptible varieties was set up with the principal goal to evaluate the behavoir of these varieties in term of resistance to downy mildew (Plasmopara viticola). This evaluation, together to oenological studies, are necessary to register them also in Regional Register (in Lazio region). Monitoring of behavior towards Plasmopara viticulture of resistant vines were done in 2020 and 2021 at different times (phenological stages) and until harvesting, according to an international standard code BBCH a centesimal phenological scale, based on coding system.

Landscape qualities and keys for action

Parallèlement à la connaissance des aptitudes viticoles, le terroir témoigne d’une identité locale, d’une spécificité des conditions de productions et d’une originalité des lieux.