IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Composition and molar mass distribution of different must and wine colloids

Composition and molar mass distribution of different must and wine colloids

Abstract

A major problem for winemakers is the formation of proteinaceous haze after bottling. Although the exact mechanisms remain unclear, this haze is formed by unfolding and agglomeration of grape proteins, being additionally influenced by numerous further factors. For instance, increased levels of polyphenols and sulfate ions, high pH and ionic strength, and increased storage temperatures have been discussed to promote haze formation. In contrast, organic acids and polysaccharides appear to inhibit protein agglomeration (Albuquerque et al. 2021). To avoid haze formation, winemakers use bentonite to reduce protein levels in the wine before bottling. However, the bentonite treatment imposes negative side effects such as losses in wine quantity and quality, as well as costs of bentonite waste disposal (van Sluyter et al. 2015). To better understand haze formation and to find alternative procedures for protein removal e.g. by enzymatic treatments, detailed insights into the composition of the wine colloids might be helpful.
Prior to characterization, colloids were isolated from five different musts (four varieties from five vineyards, three with pectinase treatment) and their corresponding wines by ultrafiltration (10 kDa cut-off) and freeze-drying. Protein and carbohydrate composition were determined after hydrolysis by ion chromatography and high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), respectively. Molar mass distribution of colloids was determined by size exclusion chromatography with multi angle light scattering in combination with an UV and RI detector (SEC-UV-MALS-RI).
Colloids were found to contain a wide range of 8.9 to 67.1 g protein and 28.1 to 78.0 g carbohydrates per 100 g dry matter. Thus, protein concentrations in must and wine were been between 0.06 and 0.40 g/L and carbohydrate concentrations between 0.17 and 0.65 g/L. While there were just minor differences in the amino acid composition between the musts and wines, the carbohydrate composition was different in the samples. For instance, arabinose and galactose were the main sugars found in all hydrolyzed must colloids, while galacturonic acid was present in higher amounts in those not treated with pectinase. After fermentation, mannose was found to be the main sugar in hydrolyzed wine colloids. SEC-UV-MALS-RI showed that the colloids contained three main fractions. Two carbohydrate-rich fractions with average molar masses from 931 to 22,617 kDa and from 80 to 495 kDa as well as a proteinaceous fraction with an average molar mass between 16 to 44 kDa.
Our results indicate that colloid concentration and composition in wine is heavily influenced by variety, vineyard and oenological practices. The isolated colloids and the analytical methods will in the future be used to screen for enzyme preparations suitable to degrade proteins in must and wine to avoid haze formation.

References

Albuquerque, Wendell; Seidel, Leif; Zorn, Holger; Will, Frank; Gand, Martin (2021): Haze Formation and the Challenges for Peptidases in Wine Protein Fining. In: Journal of Agricultural and Food Chemistry 69, S. 14402–14414.
van Sluyter, Steven C.; McRae, Jacqui M.; Falconer, Robert J.; Smith, Paul A.; Bacic, Antony; Waters, Elizabeth J.; Marangon, Matteo (2015): Wine Protein Haze: Mechanisms of Formation and Advances in Prevention. In: Journal of Agricultural and Food Chemistry 63 (16), S. 4020–4030.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Seidel Leif1, Albuquerque Wendell2, Happel Katharina3, Gand Martin2, Zorn Holger2,3, Schweiggert Ralf1 and Will Frank1

1Department of Beverage Research, Geisenheim University
2Institute of Food Chemistry and Food Biotechnology, Justus Liebig Giessen 
3Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany

Contact the author

Keywords

wine colloids, proteins, carbohydrates, molar mass

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Grape texture characteristics are linked to one major qtl

Berry texture and berry skin mechanical properties have high agronomic importance, related to quality and marketing requirements of wine, table and raisin grapes.

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as

To a better understanding of the impact of vine nitrogen status on volatile thiols from plot to transcriptome level

Volatile thiols contribute largely to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless and non-volatile precursors found in the berry and the must. The effect of vine nitrogen status on 3SH and 4MSP in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) was investigated in this study.

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

Impact of chitosan treatment on the physico-chemical features of a sangiovese red wine

Chitosan is gaining interest in red winemaking thanks to its ability to inhibit the development of Brettanomyces spp. yeast, or other undesired wine microbial threats. However, little is known about potential side-effects of its addition on the physico-chemical parameters of red wines.