IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The wine: a never-ending source of H2S and methanethiol

The wine: a never-ending source of H2S and methanethiol

Abstract

Volatile sulfur compounds (VSCs), mainly hydrogen sulfide and methanethiol (H2S and MeSH), are the responsible for reductive off-odor in wine. These compounds can remain in the wine under different chemical forms: free forms, bound to metal cations or as oxidized precursors (polysulfides and polysulfanes). Some remediation treatments, such as aeration, micro-oxygenation, copper fining and addition of oenological products are frequently used by the winemakers to eliminate the reductive problems however, they are not completely effective and sometimes this problem can reappear after a certain period of time. Recently, another options (e.g. filtration, purge…) have been also tested but their efficacy at long term is not much better. These strategies act on the free and bonded forms, therefore it has been hypothesized that exist a huge reservoir of VSCs (in oxidized forms) which is not removed by the remediation treatments and that could explain their inefficacy. Nowadays, it does not exist any reliable method to know the amount of oxidized forms in wine which could be the source of H2S and MeSH. This knowledge could help to understand better the problem of reduction of wines and improve the remediation strategies. For that reason, the objective of this work was developing a new system to monitor the release of VSCs during the storage of different wines under anoxia. This system is based on the use of reversible trapping solutions to retain the VSCs at the same time that they are produced in the wine. Different metal cations, in terms of ability and speed have been studied as potential trapping agents. The reversibility of the process to quantify H2S and MeSH was also evaluated. After the system was optimized, it was applied to several wines stored at different temperatures under anoxic conditions. Cu (I) was chosen as the best option to use in the trapping solution and a dilution with brine and addition of tris(2-carboxyethyl)phosphine (TCEP) was selected to revert the trapping process and quantify the analytes. The linearity and the reproducibility of the system was evaluated and satisfactory results were obtained. The stability of the trapping solutions was also studied to know when they should be replaced in the system to avoid problems in the determination of the analytes. The rate of formation of the VSCs on the real wines depended on the storage temperature, ranging the maximum for each wine from 3 µg/hour to 10 µg/hour of H2S at 75ºC and from 0.1 µg/hour to 0.4 µg/hour at 50ºC. In the case of MeSH, the rate was one order of magnitude lower than for H2S. The total amount of VSCs produced was different for each wine and for each temperature, reaching more than 2 mg/L of H2S at 75ºC and more than 200 µg/L at 50ºC after one month of storage. This system could be useful to predict the tendency of a wine to develop the problem of reduction and evaluate the efficacy of different remediation strategies.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Ontañón Ignacio1, Sánchez-Gimeno Diego1 and Ferreira Vicente1

1University of Zaragoza, Laboratorio de Análisis del Aroma y Enología. Química Analítica. Facultad de Ciencias. Universidad de Zaragoza. C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain

Contact the author

Keywords

Reduction, sulfur off odors, hydrogen sulfide, sulfide precursors, anoxic storage

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

In line monitoring of red wine fermentations using ir spectrospcopy

There has been a shift in modern industry to implement non-destructive and non-invasive process monitoring techniques (Helmdach et al., 2013).

Role of climate on grape characteristics of “Moscato bianco” in Piemonte (Italy)

L’objectif de l’étude était de connaître le rôle du climat sur les aspects phénologiques du cépage « Moscato bianco » dans les différentes zones de production du vin Moscato d’Asti aocg en Piemonte (Italie) et ses effets sur l’époque de vendange. La représentation cartographique ( échelle 1 :25000) de exposition, altitude, climat, index

Étude de la cinétique de transfert du 2,4,6-trichloroanisole (TCA) entre des bouchons en liège naturel et le vin – premiers résultats

The last step in winemaking is packaging the wines for market placement, while preserving the quality attained during vinification. Since the 1980s, 2,4,6-trichloroanisole (TCA) has been recognised as an incidental and random contaminant of cork, with its migration into wine thought to contribute to ‘cork taint’. This molecule is not a cork component and little is known about how it is formed on trees. Its formation from the chlorine used to wash the cork stoppers, long suspected, has been excluded by the abandonment of chlorine washing.

How distinctive are single vineyard Gewürztraminer musts and wines from Alto Adige (Italy) based on untargeted analysis, sensory profiling, and chemometric elaboration?

Vitis vinifera L. ‘Gewürztraminer’ is a historical grape variety of Alto Adige (Südtirol), Italy, which is widely grown in the area of Tramin an der Weinstraße, but is also grown globally. It produces highly aromatic wines that are strongly influenced by the terroir of the vineyard sites where they are grown. This study looked at musts and young wines from ‘Gewürztraminer’ grapes harvested in seven distinct vineyards near Tramin and then processed at Cantina di Termeno, minimizing winemaking protocol variability. Samples were profiled using bidimensional gas chromatography–time-of-flight mass spectrometry, liquid chromatography coupled to electrochemical detection, and near-IR spectrometry. The data were subjected to Principle Component Analysis and Hierarchical Clustering Analysis. Sensory discriminant testing was undertaken using the sorting method with a semi-trained panel, and the data were processed using Multidimensional Scaling. Seven must/wine pairs could be distinguished based on their untargeted volatilome profiles and on sensory evaluation. As expected, there were greater differences in the volatile compounds between the wines than between the musts. The wines from vineyards 4 and 5 were nonetheless quite homogenous in terms of chemical and sensory analyses, as were the wines from vineyards 1 and 3. For the phenolic profile, differences were noted between the musts and wines of vineyards 2, 3, and 4, but the musts from vineyards 5 and 7 were similar. Sensory analysis showed the wines from vineyards 6 and 7 to be distinct from the rest. These results reinforce that the composition of ‘Gewürztraminer’ musts and wines is strongly determined by vineyard site, even in a small geographic area with high variability of the terroir (soil and microclimate), and that these differences are apparent in the flavours and aromas of the finished wines. Further confirmation would require a larger sample of wines, preferably from several vintages.

The socioclimatic dynamics and the table grape production during a long-drought: the case of Brazilian semiarid

In 2022, the area cultivated with grapes in Brazil counted 75 thousand ha. About 1/2 of the grape production is located in rio grande do sul state, in South Brazil. Nonetheless, the northeast region, especially the Sao Francisco River Valley (SFRV), is increasing its area and production, mainly pushed by table grapes. The states of bahia and pernambuco already respond for circa 1/3 of brazilian grape production.