IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The wine: a never-ending source of H2S and methanethiol

The wine: a never-ending source of H2S and methanethiol

Abstract

Volatile sulfur compounds (VSCs), mainly hydrogen sulfide and methanethiol (H2S and MeSH), are the responsible for reductive off-odor in wine. These compounds can remain in the wine under different chemical forms: free forms, bound to metal cations or as oxidized precursors (polysulfides and polysulfanes). Some remediation treatments, such as aeration, micro-oxygenation, copper fining and addition of oenological products are frequently used by the winemakers to eliminate the reductive problems however, they are not completely effective and sometimes this problem can reappear after a certain period of time. Recently, another options (e.g. filtration, purge…) have been also tested but their efficacy at long term is not much better. These strategies act on the free and bonded forms, therefore it has been hypothesized that exist a huge reservoir of VSCs (in oxidized forms) which is not removed by the remediation treatments and that could explain their inefficacy. Nowadays, it does not exist any reliable method to know the amount of oxidized forms in wine which could be the source of H2S and MeSH. This knowledge could help to understand better the problem of reduction of wines and improve the remediation strategies. For that reason, the objective of this work was developing a new system to monitor the release of VSCs during the storage of different wines under anoxia. This system is based on the use of reversible trapping solutions to retain the VSCs at the same time that they are produced in the wine. Different metal cations, in terms of ability and speed have been studied as potential trapping agents. The reversibility of the process to quantify H2S and MeSH was also evaluated. After the system was optimized, it was applied to several wines stored at different temperatures under anoxic conditions. Cu (I) was chosen as the best option to use in the trapping solution and a dilution with brine and addition of tris(2-carboxyethyl)phosphine (TCEP) was selected to revert the trapping process and quantify the analytes. The linearity and the reproducibility of the system was evaluated and satisfactory results were obtained. The stability of the trapping solutions was also studied to know when they should be replaced in the system to avoid problems in the determination of the analytes. The rate of formation of the VSCs on the real wines depended on the storage temperature, ranging the maximum for each wine from 3 µg/hour to 10 µg/hour of H2S at 75ºC and from 0.1 µg/hour to 0.4 µg/hour at 50ºC. In the case of MeSH, the rate was one order of magnitude lower than for H2S. The total amount of VSCs produced was different for each wine and for each temperature, reaching more than 2 mg/L of H2S at 75ºC and more than 200 µg/L at 50ºC after one month of storage. This system could be useful to predict the tendency of a wine to develop the problem of reduction and evaluate the efficacy of different remediation strategies.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Ontañón Ignacio1, Sánchez-Gimeno Diego1 and Ferreira Vicente1

1University of Zaragoza, Laboratorio de Análisis del Aroma y Enología. Química Analítica. Facultad de Ciencias. Universidad de Zaragoza. C/ Pedro Cerbuna, 12, 50009, Zaragoza, Spain

Contact the author

Keywords

Reduction, sulfur off odors, hydrogen sulfide, sulfide precursors, anoxic storage

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

High-altitude vineyards under extreme conditions in the PIWI context of cultivation: economic and marketing evidence from an exploratory study in Northern Italy

Viticulture has spread to unexpected locations, such as high-altitude terrain. Among these, high-altitude viticulture has captured considerable attention, not only for the uniqueness of its products and landscapes but also because it offers an effective response to climate changes
The aim of this study is to analyse and compare wineries that used Piwi varieties (acronym for the German Pilzwiderstandfähig, i.e., cryptogame-resistant) at high altitudes (between 500 and 920 m a.s.l.) with the traditional non-mountainous viticulture model.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.

The FEM grapevine crossbreeding program for resistance to the main ampelopathies: towards climate-resilient varieties

The technique of crossing, whether free or controlled, has always been a source of variability allowing the selection of new varieties with improved fitness.