IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Gamay And Gamaret Winemaking Processes Using Stems: Impact On The Wine Aromatic Composition.

Gamay And Gamaret Winemaking Processes Using Stems: Impact On The Wine Aromatic Composition.

Abstract

Stems may bring various benefits to the wine such as alcoholic reduction, color protection or improvement of the tannic intensity. Not much used on Swiss grape varieties, the aim of this study was to identify the relevance of using this type of winemaking in the case of Gamay and Gamaret red grape varieties. In this presentation, focus will be done on the aromatic compounds brought to the wine from the stems.
Gamay and Gamaret wines were made according to five modalities: fully destemmed used as control, 20% and 40% either whole grapes or stems added to the rest of the destemmed harvest. The influence of the stems on the wine chemical properties was measured using different classical FTIR and colorimetric methods (alcohol, acidity, pH, SO2 …). Volatile composition of wine was analysed by gas chromatography coupled to  a mass spectrometer (GC-MS). The analysis of compounds with an aroma impact by olfactometry completes these analyses. Sensory analysis were also performed in order to measure the impact on the wines.
To understand the influence of stems, stem extracts were obtained from the same harvest batch using a maceration under simulated alcoholic fermentation protocol. These extracts were also analysed by GC-MS-olfactometry. The analytical results show differences between the aromatic profiles of the Gamay and Gamaret stems alcoholic extracts. The presence of terpene alcohol with floral notes such as linalool, geraniol or α-terpineol are particularly present in the alcoholic extracts of Gamaret stems. Gamay stems extracts have a more complex volatile compounds profile with esters and alcohols (fruity notes) present in greater quantities.
The presence of stems at different percentages and form during winemaking also influences the general aromatic profile of the different modalities.
This study allows us to acquire knowledge about winemaking processes performed using non-destemmed grapes and their impact on the wine characteristics.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Blackford Marie1,2, Comby Montaine1,2, Imhof Janina2,Roesle-Fuchs Julie2, Dienes-Nagy Ágnes1, Fuchsmann Pascal1, Lorenzini Fabrice1, Bourdin Gilles1 and Bach Benoit2

1AGROSCOPE
2Changins, Viticulture and oenology, HES-SO University of Applied Sciences and Arts Western Switzerland

Contact the author

Keywords

Stem, whole cluster, winemaking, aromatic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

ViniGWAS – improving the selection of climate-resilient grapevine varieties

Climate change and its consequences are becoming an increasing challenge for viticulture. The breeding of new grapevine varieties that are better adapted to the changing conditions offers a possible solution.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

Clones of 10 Vitis vinifera varieties: degree of inter- and intra-varietal variation and putative mechanisms underlying clonal variability

Context and purpose of the study. Intra-varietal variability for key physiological and oenologically important traits can be exploit in viticulture following the consistently higher environmental pressure driven by climate change.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.