IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence Of Different Grape Polysaccharides On Phenolic Compounds And Colour Characteristics Of Tempranillo Red Wines

Influence Of Different Grape Polysaccharides On Phenolic Compounds And Colour Characteristics Of Tempranillo Red Wines

Abstract

Polysaccharides (PS) are one of the main compounds found in wines, and they come mainly from the grape cell walls or from the yeasts, and they play an important role in the technological and sensory characteristics of wines. Polysaccharides obtained from yeasts have been more studied, especially mannoproteins, since there are commercial products.
Considering the large amount of waste that comes from the wine industry, the aim of this work was to study the effect of the addition of different fractions of polysaccharides extracted for grape by-products on phenolic composition and colour parameters of red wines in order to improve their quality.
Different extracts of grape polysaccharide were obtained from grape must, pomace and marc. Seven experiences were carried out with a Tempranillo red wine with a high polyphenolic content and with high astringency by duplicate: W1) control wines (without the addition of any product); W2) wines with the addition of PS extracted from white must; W3-W4) wines with the addition of PS extracted from white grape pomace (two doses); W5) wines with the addition of PS extracted from red grape marc; W6) wines with the addition of rhamnogalacturonans type II (RG-II) of 80% purity; and W7) wines with the addition of commercial PS (inactivated yeast). These products were maintained in contact with the red wines for two months, and then they were filtered, bottled and analysed after six months. Polysaccharides, different phenolic compounds and colour were evaluated.
Statistically significant differences were found in all the analysed compounds and colour parameters between treatments. The addition of PS from grape pomace and grape marc reduced the content of total polyphenols, tannins, tartaric esters of hydroxycinnamic acids and flavonols. Factorial analysis showed differences between the wines and clearly separated the treated wines with PS from control wines. The W4 and W5 were characterised by higher concentrations of anthocyanins (monomeric and copigmented) and lower of polymeric anthocyanins and colour intensity than the other wines. In general, the addition of the different PS extracts increased the total PS content.
In conclusion, the addition of different fractions of PS extracts modified the phenolic composition and colour characteristics of red wines and increased the total polysaccharide content that can influence the sensory characteristics of the wines.

 Acknowledgements:

The authors would like to thank the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) for the funding provided for this study through the project RTA2017-00005-C02-01.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Curiel-Fernández María1, Cano-Mozo Estela1, Bueno-Herrera Marta1, Canalejo Diego2, Doco Thierry3, Ayestarán Belén2, Guadalupe Zenaida2 Pérez-Magariño1

1Instituto Tecnológico Agrario de Castilla y León 

Contact the author

Keywords

polysaccharides, polyphenols, grape pomace, grape marc, red wines

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Grape development revisited through the single-berry metabolomic clock paradigm

Although the ripening process of grapevine berries is well-documented at the vineyard level, pinpointing distinct developmental stages remains challenging. The asynchronous development of berries results in dynamic biases and metabolic chimerism. It is thus crucial to consider individual berries separately and resynchronize their internal clock for deciphering physiological changes throughout development. Given the importance of grape composition in wine quality, we aimed at measuring developmental changes in the metabolome of Syrah single berries from anthesis to over-ripening, without a priori preconceived.

Interpreting wine aroma: from aroma volatiles to the aromatic perception

Wine contains so many odorants that all its olfaction-related perceptions are, inevitably, the result of the interaction between many odorants.

Grapevine nitrogen dynamics as a function of crop thinning

Context and purpose. Nitrogen (N) is crucial for plant development but is used inefficiently, with only 30–40% of the fertilizer assimilated by crops, leading to significant environmental losses.

Fresh odorous terpenoids in wines, multiples pathways of limonene degradation.

Mint aromas in wine, which manifest as “cool” or “fresh” character, can originate from different chemical classes, one of which is the terpenoids. A broadly diverse, naturally occurring class of chemical compounds, terpenes possess wide applications across multiple industries due to their pharmaceutical, antiseptic, medical, and aromatic properties. Monoterpenes, a subclass of terpenoids, likewise play a major role in wine sensory perception. Within the monoterpenes, those possessing “mint” odor qualities have often been studied in the context of “vegetal” or “herbal” wine faults; however, their role in positive aromatic evolution is less understood. Yet an extensive 2015 study of older premium Bordeaux red wines identified mint as a contributing factor in quality bouquet development. From that point, it was necessary to investigate the origins of those monoterpenes as well as the chemical conditions required for their development during ageing. Those two key points could finally facilitate predicting the apparition of minty character in older wines based on their composition while young.
A principal contributor is the cyclic monoterpene limonene, which was isolated relatively early in grapes and wine. Not only does limonene itself possess a cool, fresh odor, it is also a precursor for, and possible derivative of, additional mint monoterpenes. Among the most commonly found monoterpenes, limonene and its derivatives can constitute the majority of the essential oils of citrus fruits, mint and herb plants, and coniferous trees. Many of these mint monoterpenes also occur in grapes and wine. With aromas ranging from woody and earthy to citrus to mint and herbaceous, their contribution to wine is potentially diverse and multi-faceted. While sometimes, found at concentrations below the sensory threshold, synergistic effects between these molecules could render them perceivable.
This review looks at limonene and its transformation as studied in different matrices, and potential parallels or analogues in wine. Moreover, within the complex kinetics of wine aging, the relative concentrations of mint monoterpenes appears to continue to evolve and change, with additional evidence from model wine solutions suggesting they may even revert to their originating precursors. Continued study of mint monoterpenes and their role in wine aromatics will contribute to a deeper understanding of the development of aging bouquet and the longevity of premium wines.

Use of artificial intelligence for the prediction of microbial diseases of grapevine and optimisation of fungicide application

Plasmopara viticola, the causal agent of downy mildew (DM), and Uncinula necator, the causal agent of powdery mildew (PM), are two of the main phytopathogenic microorganisms causing major economic losses in the primary sector, especially in the wine sector, by wilting bunches and leaves with a consequent decrease in the photosynthetic rate of the plant and in the annual yield. Currently, the most widespread methods for planning spraying are based on the 3-10 rule, which states that the first application should take place when: (i) the air temperature is greater than 10°C; (ii) shoots are equal or greater than 10 cm; and (iii) a minimum of 10 mm rainfall within 24–48 hours has occurred, or at the beginning of the bud break with periodic applications according to the manufacturer’s instructions.