IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The inhibition of hydrogen sulfide and methanethiol accumulation in wine by Cu(II): The influence of temperature on the duration of protection

The inhibition of hydrogen sulfide and methanethiol accumulation in wine by Cu(II): The influence of temperature on the duration of protection

Abstract

Hydrogen sulfide and methanethiol are recognised as two of the most significant contributors to reductive off-flavours in wine. Cu(II) in wine is known to interact with both sulfhydryl compounds, lowering the concentration of their aroma-active forms while transitioning Cu(II) to a sulfhydryl-bound form. Both hydrogen sulfide and methanethiol can form during the aging of wine in low oxygen conditions, such as during bottle aging, and
their production is known to be accelerated by wine storage temperature. Consequently, the protection offered by Cu(II) to inhibit accumulation of the reductive aroma compounds during bottle aging will be limited by the Cu(II) concentration at the bottling and of rate sulfhydryl compound formation. Although insights have been made on the typical rates of binding of Cu(II) in wines in cellar conditions (i.e., 14 °C), the impact of elevated storage
conditions is not certain, but likely to influence the duration of time that Cu(II) can inhibit reductive wine characters. This study determines the rates of Cu binding during the storage of wine at variable temperatures.

Four red and three white wines were bottled with low (< 0.2 mg/L) and high (0.6 mg/L) Cu(II) concentrations. The wines were stored at 14 °C and 40 °C and measured at 0, 1, 3, 7 and 12
months, and 0, 3, 5 and 12 days, respectively. The different forms of Cu were quantified by colorimetry for white wine, and stripping potentiometry for red wine, and enabled calculation of Cu(II) binding rates during wine aging and estimation of activation energies for binding. The formation of free and salt-releasable hydrogen sulfide and methanethiol were determined by gas chromatography with chemiluminescence detection.

The results showed that the rate of Cu(II) binding was dramatically higher at 40 °C than 14°C, with complete binding of Cu(II) in the order of 3 – 8 months and 1 – 5 days, respectively, for the wines bottled with high Cu(II). The relative order of Cu(II) binding rates amongst wines was temperature dependent, whereby Cu(II) binding rates became more uniform across wines when stored at the higher temperatures. This implied limitations in utilising high storage temperatures to predict Cu(II) binding at lower storage temperatures. The accumulation of the aroma active forms of sulfhydryl compounds, that is, the free hydrogen
sulfide and free methanethiol, only occurred after Cu(II) was converted to its bound form and then also required a further lag time. These results provide critical insights into the time-line of protection afforded to wines by Cu(II) against the emergence of reductive characters during bottle aging.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Zhang Xinyi1, Langford Kylie2 and Clark Andrew C1

1Gulbali Institute, Charles Sturt University, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
2Treasury Wine Estates, 97 Sturt Highway, Nuriootpa, SA 5355, Australia

Contact the author

Keywords

Copper, reduction, hydrogen sulfide, methanethiol, bottle-aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

Variability of Tempranillo phenology within the toro do (Spain) and its relationship to climatic characteristics

Aims: The objective of this research was to analyse the spatial and temporal variability of vine phenology of the Tempranillo variety in the Toro Designation of Origen (DO) related to climatic conditions at present and under future climate change scenarios.

ePROSECCO: Historical, cultural, applied philosophy analysis and process, product and certification innovation, for the “sustainable original progress and promotion 4.1c” of a historic and famous territory and wine

According to the algorithm “A step back towards the future 4.1C”, (Cargnello,1986a, 1987d, 1988a.b, 1991, 1993, 1994b, 1995, 1999a.e, 2000b, 2007c, 2008a, 2009d, 2013; and according to the principles of “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” of GiESCO (Carbonneau and Cargnello, 2003 2015, 2017), the historical, applied philosophy and productive analysis connected to the innovations and to the “Certification of the Universal Holistic MetaEthical Sustainability 4.1C” “indexed new global production model 4.1C” has always been fundamental, especially for the “Prosecco Territory” and for the “Prosecco Wine” to design and implement their synergistic future “Sustainable and Certificable 4.1CC” according to the principles of the “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” by the GiESCO (Carbonneau and Cargnello, lc, Cargnello et Carbonneau, 2007, 2018), and of the Conegliano Campus 5.1C. (Cargnello, lc). Nowadays, people think that Prosecco is a wine from the Veneto Region (from Conegliano and Valdobbiadene in particular), while it comes from Friuli‐Venezia Giulia Region (in North Eastern Italy, such as Veneto) more precisely from “Prosecco” in the Municipality of Trieste (TS‐Italy), as documented in 1382 and in 1548, when Pier Andrea Mattioli, described “that ancient wine, which is born in Prosecco”, as a wine with the following characteristics “thin, clear, shiny, golden, odorous and pleasant to taste». In 1888 at the “Wine Fair” of Trieste there were the “Sparkling wine Prosecco” by Giovanni Balanc, by Giuseppe Klampferer and that one by Marino Luxa. In the 19th century, many expressed their appreciation for the “Prosecco” of Trieste. In order to implement intra and extra territorial and cross‐border relations, as well as, the “Certification of: Products, Companies, Territory, Bio‐MétaÉthique District 4.1C” of Prosecco, a series of activities and researches were conducted in 8 companies: 5 in the “Territory of Prosecco” (TS) in which the principles of “Charter of Sustainable Viticulture BIO‐MetaEthics 4.1CC” of GiESCO (Carbonneau and Cargnello, lc) have been successfully applied. In particolar: 1‐ new and original “Sustainable 4.1C global production model” developed also to prevent the problems caused by wild boar, roe deer, and birds while safeguarding their “psychophysical wellness”, as well as the “psychophysical wellness 4.1C” of the macro and micro flora and fauna, of the biodiversity, of the landscape, etc. (Cargnello, lc), 1.2‐ chemical weed control and “Non MetaEthics 4.1C” processing with the total grass growing of the ground without or with mowing, better if it is manual to protect grass, air and soil, 2‐ recovery of “Historic”: land, vineyards, vines, biodiversity, landscapes, productions, products, … , 3‐ production of the famous “Prosekar, also rosé, of Prosecco” and “Prosecco di Prosecco”, according to “A step back towards the future 4.1C” 4‐ to offer a deserved psychophysical well‐being to the “Prosecco Territory” and entrepreneurs. 

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Phosphonic acid and especially potassium dihydrogen phosphonate are widely used to restrain the ubiquitous pressure of grapevine downy mildew in viticulture. Nevertheless, phosphonic acid and its derivatives have been banned in organic viticulture in October 2013, because they have been classified as plant protection products since then.