IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The inhibition of hydrogen sulfide and methanethiol accumulation in wine by Cu(II): The influence of temperature on the duration of protection

The inhibition of hydrogen sulfide and methanethiol accumulation in wine by Cu(II): The influence of temperature on the duration of protection

Abstract

Hydrogen sulfide and methanethiol are recognised as two of the most significant contributors to reductive off-flavours in wine. Cu(II) in wine is known to interact with both sulfhydryl compounds, lowering the concentration of their aroma-active forms while transitioning Cu(II) to a sulfhydryl-bound form. Both hydrogen sulfide and methanethiol can form during the aging of wine in low oxygen conditions, such as during bottle aging, and
their production is known to be accelerated by wine storage temperature. Consequently, the protection offered by Cu(II) to inhibit accumulation of the reductive aroma compounds during bottle aging will be limited by the Cu(II) concentration at the bottling and of rate sulfhydryl compound formation. Although insights have been made on the typical rates of binding of Cu(II) in wines in cellar conditions (i.e., 14 °C), the impact of elevated storage
conditions is not certain, but likely to influence the duration of time that Cu(II) can inhibit reductive wine characters. This study determines the rates of Cu binding during the storage of wine at variable temperatures.

Four red and three white wines were bottled with low (< 0.2 mg/L) and high (0.6 mg/L) Cu(II) concentrations. The wines were stored at 14 °C and 40 °C and measured at 0, 1, 3, 7 and 12
months, and 0, 3, 5 and 12 days, respectively. The different forms of Cu were quantified by colorimetry for white wine, and stripping potentiometry for red wine, and enabled calculation of Cu(II) binding rates during wine aging and estimation of activation energies for binding. The formation of free and salt-releasable hydrogen sulfide and methanethiol were determined by gas chromatography with chemiluminescence detection.

The results showed that the rate of Cu(II) binding was dramatically higher at 40 °C than 14°C, with complete binding of Cu(II) in the order of 3 – 8 months and 1 – 5 days, respectively, for the wines bottled with high Cu(II). The relative order of Cu(II) binding rates amongst wines was temperature dependent, whereby Cu(II) binding rates became more uniform across wines when stored at the higher temperatures. This implied limitations in utilising high storage temperatures to predict Cu(II) binding at lower storage temperatures. The accumulation of the aroma active forms of sulfhydryl compounds, that is, the free hydrogen
sulfide and free methanethiol, only occurred after Cu(II) was converted to its bound form and then also required a further lag time. These results provide critical insights into the time-line of protection afforded to wines by Cu(II) against the emergence of reductive characters during bottle aging.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Zhang Xinyi1, Langford Kylie2 and Clark Andrew C1

1Gulbali Institute, Charles Sturt University, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
2Treasury Wine Estates, 97 Sturt Highway, Nuriootpa, SA 5355, Australia

Contact the author

Keywords

Copper, reduction, hydrogen sulfide, methanethiol, bottle-aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Blending wines from different grape varieties is often used in order to increase wine complexity and balance. Due to their popularity, several types of blends such as the Bordeaux blend, are protected by PDO legislation.

«Nektar» -the new red variety wine grape aromatic high quality

The multi-annual study of the International Genetic Bank of the Grape Vine has shown that red varieties are enough, but the red varieties that produce high-quality red wine are minimal.

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

What does the concept of natural wine evoke in the minds and senses of tasters? Effect of the level of expertise.

In this video recording of the IVES science meeting 2025, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne-Franche-Comté, Dijon, France) and María-Pilar Sáenz-Navajas (Instituto de Ciencias de la Vid y el Vino (ICVV) (CSIC-UR-GR), La Rioja, Spain) speak about the concept of natural wine. This presentation is based on an original article accessible for free on OENO One.

Traditional agroforestry vineyards, sources of inspiration for the agroecological transition of viticulture

A unique “terroir” can be found in southern Bolivia, which combines the specific features of climate, topography and altitude of high valleys, with the management of grapevines staked on trees. It is one of the rare remnants of agroforestry viticulture. A survey was carried out among 29 grapegrowers in three valleys, to characterize the structure and management of these vineyards, and identify the services they expect from trees. Farms were small (2.2 ha on average) and 85% of vineyards were less than 1 ha. Viticulture was associated with vegetable, fruit and fodder production, sometimes in the same fields. Molle trees were found in all plots, together with one or two other native tree species. Traditional grapevine varieties such as Negra Criolla, Moscatel de Alejandría and Vicchoqueña were grown with a large range of densities from 1550 to 9500 vines ha-1. From 18 to 30% of them were staked on trees, with 1.2 to 4.9 vines per tree. The management of these vineyards (irrigation, fertilization and grapevine protection) was described, the most particular technical operation being the coordinated pruning of trees and grapevines. Three types of management could be identified in the three valleys. Grapegrowers had a clear idea of the ecosystem services they expected from trees in their vineyards. The main one was protection against climate hazards (hail, frost, flood). Then they expected benefits in terms of pest and disease control, improvement of soil fertility and resulting yield. At last, some producers claimed that tree-staking was quicker and cheaper than conventional trellising. It can be hypothesized then that agroforestry is a promising technique for the agroecological transition of viticulture. Its contribution to the “terroir” of the high valleys of southern Bolivia and its link with the specificities of the wines and spirits produced there remain to be explored.