IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect Of Grape Polysaccharides On The Volatile Composition Of Red Wines

Effect Of Grape Polysaccharides On The Volatile Composition Of Red Wines


Yeast mannoproteins and derivates are polysaccharides produced from the cell walls of different yeast strains widely used in the winemaking and finning of wines to improve their overall stability and sensory properties. Some studies reported that mannoproteins maintain the wine aroma tending to be more appealing. On the contrary, grape polysaccharides are not commercially available, and the recovery of these compounds from grape by-products is nowadays a great challenge for the oenological research. These polysaccharides have a great potential in organoleptic finning since they have been reported to modulate the wine quality, as arabinogalactans which interacts with wine aroma compounds and increase their volatility (Ribeiro et al., 2014; Rinaldi et al., 2021).
In this study grape polysaccharide extracts obtained from different sources were used as finning agents at bottling in three wines from Vitis vinifera L. cv. Tempranillo and Graciano. Their effect on the volatile composition and profile was analyzed. Polysaccharides extracts were obtained from white pomace by-products (WP), red pomace by-products (RP), white must (WM), red must (RM), red wine (RW), and lees recovered after the winemaking (RL). Two more extracts with higher purification degrees were used (PE1 and PE2). The results were compared with a control (C) wine sample and with mannoproteins commercially available (CM).
The analysis of volatile compounds was performed using a GC-MS after a liquid-liquid extraction as described by Oliveira et al., 2006. Discriminant analyses were performed to differentiate the red wines by the fining extract used. WM, RM and CM wines were characterized by high contents of alcohols, C6 alcohols, some esters as ethyl isovalerate, acetates, acids, and terpenes. On the other hand, RW, RP, and RL wines were characterized by high contents of ethyl esters as ethyl lactate, ethyl hexanoate and ethyl octanoate, and volatile phenols, specially 4-vinylguaiacol and 4-ethylguaiacol. The wines treated with PE1 and PE2 were those which presented the lowest concentrations on most of the volatile compounds detected. Discriminant analyses showed that the use of the polysaccharide extracts modified the volatile composition of the wines.


The authors would like to thank the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) for the funding provided for this study through the project RTA2017-00005-C02-02.


Oliveira, J. M., Faria, M., Sá, F., Barros, F., & Araújo, I. M. (2006). C6-alcohols as varietal markers for assessment of wine origin. Analytica Chimica Acta, 563(1-2 SPEC. ISS.), 300–309. https://doi.org/10.1016/j.aca.2005.12.029
Rinaldi, A., Gonzalez, A., Moio, L., & Gambuti, A. (2021). Commercial mannoproteins improve the mouthfeel and colour of wines obtained by excessive tannin extraction. Molecules, 26(14). https://doi.org/10.3390/molecules26144133
Ribeiro, T., Fernandes, C., Nunes, F. M., Filipe-Ribeiro, L., & Cosme, F. (2014). Influence of the structural features of commercial mannoproteins in white wine protein stabilization and chemical and sensory properties. Food Chemistry, 159, 47–54. https://doi.org/10.1016/j.foodchem.2014.02.149


Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster


Curiel-Fernández María1,2, Canalejo Diego1,2, Zhao Feng1,2, Martínez-Lapuente Leticia1,2, Ayestarán Belén1,2, Cano-Mozo Estela1,2, Pérez-Magariño Silvia1,2, Guadalupe Zenaida1,2

1Instituto Tecnológico Agrario de Castilla y León
2Consejería de Agricultura y Ganadería 

Contact the author


By-product valorization, grape pomace, lees, organoleptic modulation, grape polysaccharides


IVAS 2022 | IVES Conference Series


Related articles…

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

The real sour grapes: genetic Loci, genes, and metabolic changes associated with grape malate levels

Insufficient levels of malate and lack of acidity in commercial grape cultivars (V.vinifera) hinders the quality of fruit grown in warm climates. Conversely, excessive levels of malate and sourness in wild Vitis grape, leads to unpalatable fruit and complicates the introgression of valuable disease resistant alleles through breeding. Nonetheless, albeit decades of research, knowledge regarding the molecular regulation of malate levels in grape remains limited.


In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].