Macrowine 2021
IVES 9 IVES Conference Series 9 The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

Abstract

AIM This work aims to investigate fluorescence spectroscopy as a tool to assess grape homogenates to discriminate between samples of varying maturities and to develop an index to objectively characterise the level of grape heterogeneity present in any given vineyard.

METHODS Cabernet-Sauvignon grape bunches were sampled every ten days from veraison through to harvest from the Coonawarra Geographical Indication of South Australia in 2020. After sorting into maturity classes using density baths,1 berries were homogenised and an Aqualog spectrophotometer was used to record the excitation emission matrix (EEM)2 of each maturity class at each sample date. The pre-processed EEM data underwent parallel factor analysis (PARAFAC) to identify the relevant fluorescence regions that discriminated samples based on maturity. The grape homogenate EEM dataset was then used to formulate a variability index.

RESULTS Chlorophyll and anthocyanin fluorescence signals were identified from EEM data at excitation wavelengths in the range 250 – 700 nm and emission wavelengths between 400 – 800 nm in grape homogenate samples using PARAFAC. Discrimination between samples depending on maturity was achieved using PARAFAC. The variability index was calculated and levels of grape heterogeneity were quantified.

CONCLUSIONS

This work demonstrated the possibility of using grape homogenate EEM data, particularly in the region of chlorophyll and anthocyanin fluorescence, to objectively measure grape heterogeneity by developing a variability index. Grape heterogeneity has been shown to impact Cabernet-Sauvignon wine chemical profile and sensory characteristics.3 Therefore, a tool to analyse grape heterogeneity within a winery could aid viticultural and winemaking decisions to achieve wines of targeted quality and style.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claire Armstrong 

Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide. ,Adam GILMORE, HORIBA Instruments Inc., Piscataway, United States. Paul BOSS, CSIRO Agriculture and Food and Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide.  Vinay PAGAY, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide. David JEFFERY, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide.

Contact the author

Keywords

chemometrics, colour, grape maturity, parafac, vineyard variability

Citation

Related articles…

Phenolic extraction during fermentation as affected by ripeness level of Syrah/R99 grapes

L’extraction phénolique au cours de la fermentation à partir de vendanges de différents degrees de maturité du cépage Syrah/R99 a été etudiée. Cette travail fait parti d’un projet focalisé sur la qualité du raisin et des vins obtenus au cours du millésime 2002. Les vignes sont situées à Stellenbosch (Afrique du Sud) sur un sol Glenrose

Influence of protein stabilization with aspergillopepsin I on wine aroma composition

The protein haze formation in white and rosé wines during storage, shipping and commercialization has always been an important issue for winemakers. Among the various solutions industrially proposed, the use of bentonite is certainly the most widespread. However, the harmful effects of this treatment are known either in terms of wine volume loss and wine flavour and aroma.

Identification of natural terroir units for viticulture: Stellenbosch, South Africa

Une unité de terroir naturel (UTN) peut être définie comme une unité de terre qui est caractérisée par une relative homogénéité topographique, climatique, géologique et pédologique. De telles unités sont de grande valeur pour mieux comprendre le système terroir/vigne/vin. Le but de cette étude est de caractériser la région viticole du Bottelaryberg. – Simonsberg-Helderberg en utilisant une information digitale existante et d’identifier des UTN en utilisant un Système d’information Géographique.

Genetic prospecting of rainfed viticulture in the region with the largest cultivated area in Chile

The Maule region hosts up to a third of the total area of vineyards in Chile, in an environment where ancient practices inherited from the colonial past coexist with modernity and dynamism that include technified irrigation and fine vines. In the dry land of Maule there is a viticulture that has subsisted with ancient vines and traditions transmitted over generations, and there is little clarity about the origin and classification of the Maule viticulture, giving rise to the use of different concepts as synonyms to describe the ancient, minority, patrimonial or Criollas vines. In order to characterize and protect the ancient material, we studied the genetic diversity of a territorial collection that covers 80% of the communes of the region, prioritizing plants established more than 40-60 years ago.

How does aromatic composition of red wines, resulting from varieties adapted to climate change, modulate fruity aroma?

One of the major issues for the wine sector is the impact of climate change linked to the increasing temperatures which affects physicochemical parameters of the grape varieties planted in Bordeaux vineyard and consequently, the quality of wine. In some varietals, the attenuation of their fresh fruity character is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive strategy on climate change, some winegrowers have initiated changes in the Bordeaux blend of vine varieties [2]. This study intends to explore the fruitiness in wines produced from grape varieties adapted to the future climate of Bordeaux. 10 commercial single–varietal wines from 2018 vintage made from the main grape varieties in the Bordeaux region (Cabernet franc, Cabernet-Sauvignon and Merlot) as well as from indigenous grape varieties from the Mediterranean basin, such as Cyprus (Yiannoudin), France (Syrah), Greece (Agiorgitiko and Xinomavro), Portugal (Touriga Nacional) and Spain (Garnacha and Tempranillo), were selected among 19 samples using sensory descriptive analyses. Both sensory and instrumental analyses were coupled, to investigate their fruity aroma expression. For sensory analysis, samples were prepared from wine, using a semi preparative HPLC method which preserves wine aroma and isolates fruity characteristics in 25 specific fractions [3,4]. Fractions of interest with intense fruity aromas were sensorially selected for each wine by a trained panel and mixed with ethanol and microfiltered water to obtain fruity aromatic reconstitutions (FAR) [5]. A free sorting task was applied to categorize FAR according to their similarities or dissimilarities, and different clusters were highlighted. Instrumental analysis of the different FAR and wines demonstrated variations in their molecular composition. Results obtained from sensory and gas chromatography analysis enrich the knowledge of the fruity expression of red wines from “new” grape varieties opening up new perspectives in wine technology, including blending, thus providing new tools for producers.