IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New insight the pinking phenomena of white wine

New insight the pinking phenomena of white wine

Abstract

Pinking of white wine is an undesired change potentially occurring over storage, leading to the turning of color from yellow into salmon-red hue. Recently, the appearance of pink color was associated to small concentrations of malvidin-3-O-glucoside (∼ 0.3mg/L) present in white wines produced under reducing conditions from Síria grape variety [1]. Other suggested mechanisms were the polymerization of anthocyanins under oxidative condition, the combination of more than ten different monomers and polymeric compounds, the formation of a derivative from 2-S-glutathionyl-caftaric acid [2]. However, this color modification has been not fully understood. This study aimed to clarify the molecular mechanisms and the compound(s) involved in the pinking of white wine. 
The appearance of pinking was evaluated in model wine added with increasing concentrations of sulfur-containing compounds (i.e. glutathione, cysteine, mercaptoethanol), and fixed amounts of the phenolics (i.e. catechin and caffeic acid), singularly or in combination. An assay with copper, with and without phenolics, was also carried out. The oxidation was generated by adding p-benzoquinone in both oxic and anoxic conditions. The intensity of pink color was measured at 520 nm. A major compound associated to pinking was detected by UPLC-UV and its molecular weight and structure were investigated by High Resolution Mass Spectrometry (HRMS) and Nuclear Magnetic Resonance (NMR), respectively.
In most of the tested conditions, the pink color appeared and resulted more intense with catechin. On the contrary, the color was yellow-brownish in the absence of phenolics notwithstanding the presence of copper. Considering the single addition of the thiol compounds, the major pink intensity and the fastest appearance were due to cysteine. The pinking intensity was lower with glutathione and it was not detected with mercaptoethanol. Catechin was the phenolic mainly involved into the pinking. The rate of pinking formation was dependent on both the thiol/p-benzoquinone and catechin/p-benzoquinone molar ratios with the former playing a paramount role. Copper was also involved in this phenomenon The major formation rate was observed when thiol/p-benzoquinone molar ratio was about 0.7. The compound associated to the pink color showed a maximum adsorption at 505 nm, characteristic of anthocyanin-like moieties and its accurate mass ([M+H]+) was 450.0635 Da. NMR analysis evidenced three molecular forms in equilibrium. The estimated conversion yield was 5%.These data suggest that pinking phenomena, in our experimental conditions, is due to the oxidation of catechin with the aid of sulphur-containing compounds, the latter with a crucial role for this color change.

References

[1] Andrea-Silva J., Cosme F., Ribeiro L. F., Moreira A. S. P., Malheiro A. C., Coimbra M. A., Domingues M. R. M., & Nunes F. M. (2014). Origin of the pinking phenomenon of white wines. Journal of Agriculture and Food Chemistry, 62(24), 5651–5659. https://doi.org/10.1021/jf500825h.
[2] Gabrielli M., Fracassetti D., Romanini E., Colangelo D., Tirelli A., Lambri, M. (2021). Oxygen-induced faults in bottled white wine: A review of technological and chemical characteristics. Food Chemistry, 348, 128922. https://doi.org/10.1016/j.foodchem.2020.128922.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Ragg Enzio1, De Noni Ivano1 and Tirelli Antonio1

1Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy

Contact the author

Keywords

Pinking, Oxidation, Quinones, Cysteine, Catechin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Unveiling the secrets of catechin: insights from NMR spectroscopy

Catechins, a class of flavonoids found in foods and beverages such as wine and tea, exhibit potent antioxidant properties that contribute to various health benefits.[1]

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.

Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Global warming has enhanced the frequency and severity of drought events, hence calling for a better management of water resources in the vineyard and for an improvement of breeding platforms. Somatic embryogenesis (SE) (i.e. the initiation of embryos from somatic tissues) can spontaneously generate new genetic variability, which results from genetic mutations, changes in epigenetic marks, or phenotypic alterations.
This study was tailored to test whether vines in vitro regenerated through SE (i.e. somaclones), can tolerate water deprivation better than the mother plant.

Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

The leaf area is of fundamental importance so that the plant can realize adequate levels of photosynthesis for the accumulation of reserves and to reach a suitable maturation of
the berries. In this sense, the objective was to evaluate the effect of different lengths of the stalks from the first support wire, in the must and in the wine of ‘Cabernet Sauvignon’.

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.