IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New insight the pinking phenomena of white wine

New insight the pinking phenomena of white wine

Abstract

Pinking of white wine is an undesired change potentially occurring over storage, leading to the turning of color from yellow into salmon-red hue. Recently, the appearance of pink color was associated to small concentrations of malvidin-3-O-glucoside (∼ 0.3mg/L) present in white wines produced under reducing conditions from Síria grape variety [1]. Other suggested mechanisms were the polymerization of anthocyanins under oxidative condition, the combination of more than ten different monomers and polymeric compounds, the formation of a derivative from 2-S-glutathionyl-caftaric acid [2]. However, this color modification has been not fully understood. This study aimed to clarify the molecular mechanisms and the compound(s) involved in the pinking of white wine. 
The appearance of pinking was evaluated in model wine added with increasing concentrations of sulfur-containing compounds (i.e. glutathione, cysteine, mercaptoethanol), and fixed amounts of the phenolics (i.e. catechin and caffeic acid), singularly or in combination. An assay with copper, with and without phenolics, was also carried out. The oxidation was generated by adding p-benzoquinone in both oxic and anoxic conditions. The intensity of pink color was measured at 520 nm. A major compound associated to pinking was detected by UPLC-UV and its molecular weight and structure were investigated by High Resolution Mass Spectrometry (HRMS) and Nuclear Magnetic Resonance (NMR), respectively.
In most of the tested conditions, the pink color appeared and resulted more intense with catechin. On the contrary, the color was yellow-brownish in the absence of phenolics notwithstanding the presence of copper. Considering the single addition of the thiol compounds, the major pink intensity and the fastest appearance were due to cysteine. The pinking intensity was lower with glutathione and it was not detected with mercaptoethanol. Catechin was the phenolic mainly involved into the pinking. The rate of pinking formation was dependent on both the thiol/p-benzoquinone and catechin/p-benzoquinone molar ratios with the former playing a paramount role. Copper was also involved in this phenomenon The major formation rate was observed when thiol/p-benzoquinone molar ratio was about 0.7. The compound associated to the pink color showed a maximum adsorption at 505 nm, characteristic of anthocyanin-like moieties and its accurate mass ([M+H]+) was 450.0635 Da. NMR analysis evidenced three molecular forms in equilibrium. The estimated conversion yield was 5%.These data suggest that pinking phenomena, in our experimental conditions, is due to the oxidation of catechin with the aid of sulphur-containing compounds, the latter with a crucial role for this color change.

References

[1] Andrea-Silva J., Cosme F., Ribeiro L. F., Moreira A. S. P., Malheiro A. C., Coimbra M. A., Domingues M. R. M., & Nunes F. M. (2014). Origin of the pinking phenomenon of white wines. Journal of Agriculture and Food Chemistry, 62(24), 5651–5659. https://doi.org/10.1021/jf500825h.
[2] Gabrielli M., Fracassetti D., Romanini E., Colangelo D., Tirelli A., Lambri, M. (2021). Oxygen-induced faults in bottled white wine: A review of technological and chemical characteristics. Food Chemistry, 348, 128922. https://doi.org/10.1016/j.foodchem.2020.128922.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Ragg Enzio1, De Noni Ivano1 and Tirelli Antonio1

1Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy

Contact the author

Keywords

Pinking, Oxidation, Quinones, Cysteine, Catechin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

Innovative red winemaking strategy: biosurfactant-assisted extraction and stabilization of phenolic compounds

The color is the first attribute perceived by consumers and a major factor determining the quality of red wines. This depends mainly on the content of grape anthocyanins and their extraction into the juice/wine during winemaking. Furthermore, these compounds can undergo reactions that influence the chemical and sensory characteristics of the wine. Monomeric forms are prone to oxidation and adsorption on solid parts.

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Aged red wines possess phenolic composition very different from young ones due to the transformations among native grape phenolics and the formation of new polymeric polyphenols during aging process.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.