IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New insight the pinking phenomena of white wine

New insight the pinking phenomena of white wine

Abstract

Pinking of white wine is an undesired change potentially occurring over storage, leading to the turning of color from yellow into salmon-red hue. Recently, the appearance of pink color was associated to small concentrations of malvidin-3-O-glucoside (∼ 0.3mg/L) present in white wines produced under reducing conditions from Síria grape variety [1]. Other suggested mechanisms were the polymerization of anthocyanins under oxidative condition, the combination of more than ten different monomers and polymeric compounds, the formation of a derivative from 2-S-glutathionyl-caftaric acid [2]. However, this color modification has been not fully understood. This study aimed to clarify the molecular mechanisms and the compound(s) involved in the pinking of white wine. 
The appearance of pinking was evaluated in model wine added with increasing concentrations of sulfur-containing compounds (i.e. glutathione, cysteine, mercaptoethanol), and fixed amounts of the phenolics (i.e. catechin and caffeic acid), singularly or in combination. An assay with copper, with and without phenolics, was also carried out. The oxidation was generated by adding p-benzoquinone in both oxic and anoxic conditions. The intensity of pink color was measured at 520 nm. A major compound associated to pinking was detected by UPLC-UV and its molecular weight and structure were investigated by High Resolution Mass Spectrometry (HRMS) and Nuclear Magnetic Resonance (NMR), respectively.
In most of the tested conditions, the pink color appeared and resulted more intense with catechin. On the contrary, the color was yellow-brownish in the absence of phenolics notwithstanding the presence of copper. Considering the single addition of the thiol compounds, the major pink intensity and the fastest appearance were due to cysteine. The pinking intensity was lower with glutathione and it was not detected with mercaptoethanol. Catechin was the phenolic mainly involved into the pinking. The rate of pinking formation was dependent on both the thiol/p-benzoquinone and catechin/p-benzoquinone molar ratios with the former playing a paramount role. Copper was also involved in this phenomenon The major formation rate was observed when thiol/p-benzoquinone molar ratio was about 0.7. The compound associated to the pink color showed a maximum adsorption at 505 nm, characteristic of anthocyanin-like moieties and its accurate mass ([M+H]+) was 450.0635 Da. NMR analysis evidenced three molecular forms in equilibrium. The estimated conversion yield was 5%.These data suggest that pinking phenomena, in our experimental conditions, is due to the oxidation of catechin with the aid of sulphur-containing compounds, the latter with a crucial role for this color change.

References

[1] Andrea-Silva J., Cosme F., Ribeiro L. F., Moreira A. S. P., Malheiro A. C., Coimbra M. A., Domingues M. R. M., & Nunes F. M. (2014). Origin of the pinking phenomenon of white wines. Journal of Agriculture and Food Chemistry, 62(24), 5651–5659. https://doi.org/10.1021/jf500825h.
[2] Gabrielli M., Fracassetti D., Romanini E., Colangelo D., Tirelli A., Lambri, M. (2021). Oxygen-induced faults in bottled white wine: A review of technological and chemical characteristics. Food Chemistry, 348, 128922. https://doi.org/10.1016/j.foodchem.2020.128922.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Ragg Enzio1, De Noni Ivano1 and Tirelli Antonio1

1Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy

Contact the author

Keywords

Pinking, Oxidation, Quinones, Cysteine, Catechin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Interaction Between Armenian Clay-based Ceramic and Model Wine

Clay-based ceramic vessels (jars, pyhtoi, etc.) for wine fermentation and aging processes have been used in several cultures for millennia. This know-how still in practice in several countries of the Armenian highland is gaining worldwide in curiosity, popularity, and interest. Ceramic pots are famous among traditional winemakers for their benefits such as temperature regulation, natural cooling system, favorable oxygen exchange, and impact on pH, which are different from those of stainless steel, wood barrels, or concrete.

Effects of early leaf removal on grape quality of Albariño vines subjected to different water regimes

The grape quality is affected by the canopy manipulation. Water management is a fundamental tool for controlling reproductive growth

Precipitation variability in a temperate coastal region and how it affects Tannat and Albariño cultivars 

Climate is one of the main components that defines the development and behavior of the plant, conditioning the health status and the final quality of the grapes. In temperate coastal climates such as in Uruguay (latitude 35° S, longitude 55° O), precipitations during the growing season present high interannual variability, with a average of 100 mm per month. This variability means that plants must adapt to conditions from one year to the next.

Association between dietary pattern and wine consumption and Alzheimer’s disease in a cohort from La Rioja (Spain)

Addressing modifiable risk factors is the most promising strategy to prevent/delay Alzheimer Disease (AD)[1]. The aim of the study was to establish the connections between dietetic habits, wine consumption and AD. Thus, 98 volunteers were recruited: 50 diagnosed as AD and 48 healthy/controls. The Food Frequency Questionnaire (FFQ) was used for dietary patterns assessment and, based on these data, the Mind Diet Score was calculated. (Poly)phenol metabolites (especially derived from wine consumption) were analyzed by UPLC-QqQ-MS/MS in 24-h urine samples to confirm dietary (poly)phenol consumption.

Solid Rectified Concentrated grape Must (SRCM) in sparkling wines production: studying the sensory impact of an innovative sugar substrate

The production of sparkling wines requires sugars for the second fermentation. The Solid Rectified Concentrated Must (SRCM) is a water free crystalline form of grape sugar, offering a purer, more stable, and easier-to-use alternative to the liquid Rectified Concentrated Must (RCM).