IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Polyphenolic profile and dietary fiber content of skins and seeds from unfermented and fermented grape pomace

Polyphenolic profile and dietary fiber content of skins and seeds from unfermented and fermented grape pomace

Abstract

The valorization of winemaking byproducts is subordinated to the knowledge of their chemical characteristics. This work concerned the determination of the polyphenolic profile and the dietary fiber content of skins and seeds from unfermented and fermented pomace of different cultivars (Moscato bianco, Cortese, Arneis, Pinot Noir, Barbera, Grignolino, Nebbiolo), sampled from some wineries in the Piedmont area (Italy) during the 2020 harvest.
The pomace was dried under controlled conditions (pre-drying for 48 h at room temperature in a ventilated and dehumidified room, followed by drying at 40 °C for 48 hours, up to constant weight). Before drying, the unfermented pomace was washed with water (3 successive washes) to remove residual sugars. Once dried, the skins were separated from the seeds; the 2 fractions were then separately milled to obtain skins and seeds flours.
The determination of the polyphenolic composition of the flours was carried out on the extracts obtained with a double extraction: first with methanol/water 50:50 %v/v and then with acetone/water 70:30 %v/v. The content of total polyphenols (GAE), total flavonoids and condensed tannins was determined in the extracted liquid solution (EPP, extractable polyphenols), while the fraction of non-extractable condensed tannins was determined in the residue after extraction (NEPP, non-extractable polyphenols), with the method proposed by Saura Calixto et al., 1991 (modified). The percentage content of dietary fiber (DF) of the flours was also determined with the official method AOAC 985-29. Limited to the skins samples, the analysis was extended to the distinction between soluble and insoluble dietary fiber (SDF and IDF).
Significant differences in the EPP content were observed between skins (GAE values ranging between 21.5 and 35.6 mg/g of flour, dry weight) and seeds (GAE values between 28.7 and 94.3 mg/g d.w.). The skins had lower GAE values, (from 30.0 % to 75.6 %) than the respective seeds. The seeds with the highest polyphenolic content were, in decreasing order, unfermented Pinot Noir, Moscato bianco, fermented Pinot Noir and Cortese. The tannins concentration was overall higher for unfermented seeds, with important differences between cultivars.
Conversely, the NEPP content was higher in the skins, 2.6 to 4.4 times higher than seeds. The content in polyphenols linked to the dietary fiber was more homogeneous among the different seed samples (3.41 to 4.93 mg/g d.w. compared to the skins (between 11.6 to 18.4 mg/g d.w).
Finally, significant differences between skins and seeds were found in the total DF content. The seeds had total DF contents (52.0 -65.6 % d.w.) 1.1 to 1.3 times higher than the skins. The winemaking practices have influenced the quantity and characteristics of the DF in the skins (SDF and IDF fractions): the total and insoluble DF content was higher in the flours from unfermented pomace than in the fermented ones.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Guaita Massimo1, Messina Stefano1, Zocco Alice2, Motta Silvia1, Casini Francesco1, Coisson Jean Daniel2 and Bosso Antonella1

1Consiglio per La Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria — Centro di Ricerca Viticoltura Ed Enologia
2Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale

Contact the author

Keywords

Grape pomace, winemaking byproducts, extraction, polyphenols, dietary fiber

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Comparing the chemical and sensory consequences of grapevine smoke exposure in grapes and wine from different cultivars and different wine regions in Australia

Aim: This study aimed to benchmark the chemical and sensory consequences of grapevine exposure to smoke, by comparing: (i) the concentration of volatile phenols and volatile phenol glycosides in control and smoke-affected grapes from different cultivars and different wine regions; and (ii) the chemical and sensory profiles of wines made from control and smoke-affected grapes, from different cultivars.  

Phenolic composition of Tempranillo Blanco grapes changes after foliar application of urea

Our research aimed to determine the effect and efficiency of foliar application of urea on the phenolic composition of Tempranillo Blanco grapes. The field experiment was carried out in 2019 and 2020 seasons and the plot was located in D.O.Ca Rioja (North of Spain). The vineyard was Vitis vinifera L. Tempranillo Blanco and grafted on Richter-110 rootstock. The treatments were control (C), whose plants were sprayed with water and three doses of urea: plants were sprayed with urea 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The applications were performed in two phenological stages, pre-veraison (Pre) and veraison (Ver). Also, each of the treatments was repeated one week later. Control and treatments were performed in triplicate and arranged in a randomised block design. Grapes were harvested at optimum ripening stage. High-performance liquid chromatography was used to analyse the phenolic composition of the grapes. Finally, the results obtained from the analytical determinations – flavonols, flavanols and non-flavonoid (hydroxybenzoic acids, hydroxycinnamic acids and stilbenes) – were studied statistically by analysis of variance. The results showed that, in 2019, U6-Pre and U9-Pre treatments increased the hydroxybenzoic acid content in grapes, and also all foliar treatments applied at Pre enhanced the stilbene concentration. Moreover, U3-Ver was the only treatment that rose flavonol and stilbene contents in the Tempranillo Blanco grapes. In 2020, all treatments applied at Pre enhanced the flavonol concentration in grapes. Furthermore, U3-Pre and U9-Pre treatments increased stilbene content in grapes. Nevertheless, the hydroxybenzoic acid content was improved by U6-Ver and U9-Ver and besides, hydroxycinnamic acid concentration in grapes was increased by all treatments applied at Ver. In conclusion, the lower and highest dose of urea (U3 and U9), applied at pre-veraison, were the best treatments to improve the Tempranillo Blanco grape phenolic composition.

Consistency of the hydraulic traits and stomatal responses in grapevines with contrasting hydraulic vulnerability

Different from wild species in arid and semiarid conditions, cultivated species are very sensitive to drought and, beyond some stress thresholds, food production is not possible

Using image analysis for assessing downy mildew severity in grapevine

Aim: Downy mildew is a crucial disease in viticulture. In-field evaluation of downy mildew has been classically based on visual inspection of leaves and fruit. Nevertheless, non-invasive sensing technologies could be used for disease detection in grapevine. The aim of this study was to assess downy mildew severity in grapevine leaves using machine vision.

Deciphering the color of rosé wines using polyphenol targeted metabolomics

The color of rosés wines is extremely diverse and a key element in their marketing. It is due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making.