IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Benefits and risks of the utilization of grape pomace as organic fertilizers

Benefits and risks of the utilization of grape pomace as organic fertilizers

Abstract

Rhineland-Palatinate is Germany’s largest wine growing region. The recently launched collaborative project in the frame of the ‘Carl-Zeiss-Stiftungs-Kooperationsfonds für Nachhaltigkeitsforschung’ focusses on the risk-benefit assessment of the use of grape pomace (GP) from the region ‘Pfalz’ in Rhineland-Palatinate as a natural fertilizer.GP contains high loads of bioactive compounds such as polyphenols and macro- as well as micronutrients which make GP an attractive, low-cost fertilizer [1,2]. On the other hand, GP may also contain residues of pesticides and mycotoxins. Their presence is undesirable in wine as well as in a potential fertilizer [3,4]. The application of high amounts of the above mentioned substances at once could negatively affect plant quality and microbial soil communities [5]. Therfore, the agricultural value of GP as a fertilizer could be limited by the transfer of these compounds into the soil. Up to date, little is known about the influence of GP constituents on the soil quality and processes, especially in a long-term exposure.In this project, we aim to determine the contents of polyphenols, mycotoxins, and pesticides in addition to the macro- and micronutrient content of GP from six different grape varieties. Furthermore, the effect on important soil parameters, such as nutrient availability, hydrodynaics, and microbiology will be analysed and evaluated.

References

[1] E. Nistor, A. Dobrei, E. Kiss, V. Ciolac, Journal of Horticulture, Forestry and Biotechnology 18, 141 (2014).
[2] C. Fuchs, T. Bakuradze, R. Steinke, R. Grewal, G.P. Eckert, E. Richling, Journal of Functional Foods 70, 103988 (2020).
[3] J.E. Welke, Current Opinion in Food Science 29, 7 (2019).
[4] X. Hou, Z. Xu, Y. Zhao, D. Liu, Journal of Food Composition and Analysis 89, 103465 (2020).
[5] C. Buchmann, A. Felten, B. Peikert, K. Muñoz, N. Bandow, A. Dag, G.E. Schaumann, Plant Soil 386, 99 (2015).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sullivan Sadzik1, Korz Sven2, Buchmann Christian2, Richling Elke1 and Munoz Katherine2

1TU Kaiserslautern, Department of Chemistry, Division of Food Chemistry and Toxicology
2Universität Koblenz-Landau, Campus Landau, Germany

Contact the author

Keywords

soil, grape pomace, fertilizer, polyphenols, mycotoxins

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Enhancing grapevine transformation and regeneration: A novel approach using developmental regulators and BeYDV-mediated expression

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering crispr/cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

IMPACT OF MANNOPROTEIN N-GLYCOSYL PHOSPHORYLATION AND BRANCHING ON WINE POLYPHENOL INTERACTIONS WITH YEAST CELL WALLS

Yeast cell walls (CWs) may adsorb wine components with a significant impact on wine quality. When dealing with red wines, this adsorption is mainly related to physicochemical interactions between wine polyphenols and cell wall mannoproteins. However, mannoproteins are a heterogeneous family of complex peptidoglycans including long and highly branched N-linked oligosaccharides and short linear O-linked oligosaccharides, resulting in a huge structural diversity.

Grapevine adaptation to drought and resistance to Neofusicoccum parvum, causal agent of Botryosphaeria dieback

The sustainability of viticulture in response to climate change has been addressed mainly considering agronomic impacts, such as water management and diseases, either separately or together.
In grapevines, there is strong evidence that different genotypes respond differently to biotic and abiotic stresses. A screening was conducted on various local cultivars in response to drought and Neofusicoum parvum infection aiming to evaluate their susceptibility to abiotic stress and resistance to fungal diseases.

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.