IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Benefits and risks of the utilization of grape pomace as organic fertilizers

Benefits and risks of the utilization of grape pomace as organic fertilizers

Abstract

Rhineland-Palatinate is Germany’s largest wine growing region. The recently launched collaborative project in the frame of the ‘Carl-Zeiss-Stiftungs-Kooperationsfonds für Nachhaltigkeitsforschung’ focusses on the risk-benefit assessment of the use of grape pomace (GP) from the region ‘Pfalz’ in Rhineland-Palatinate as a natural fertilizer.GP contains high loads of bioactive compounds such as polyphenols and macro- as well as micronutrients which make GP an attractive, low-cost fertilizer [1,2]. On the other hand, GP may also contain residues of pesticides and mycotoxins. Their presence is undesirable in wine as well as in a potential fertilizer [3,4]. The application of high amounts of the above mentioned substances at once could negatively affect plant quality and microbial soil communities [5]. Therfore, the agricultural value of GP as a fertilizer could be limited by the transfer of these compounds into the soil. Up to date, little is known about the influence of GP constituents on the soil quality and processes, especially in a long-term exposure.In this project, we aim to determine the contents of polyphenols, mycotoxins, and pesticides in addition to the macro- and micronutrient content of GP from six different grape varieties. Furthermore, the effect on important soil parameters, such as nutrient availability, hydrodynaics, and microbiology will be analysed and evaluated.

References

[1] E. Nistor, A. Dobrei, E. Kiss, V. Ciolac, Journal of Horticulture, Forestry and Biotechnology 18, 141 (2014).
[2] C. Fuchs, T. Bakuradze, R. Steinke, R. Grewal, G.P. Eckert, E. Richling, Journal of Functional Foods 70, 103988 (2020).
[3] J.E. Welke, Current Opinion in Food Science 29, 7 (2019).
[4] X. Hou, Z. Xu, Y. Zhao, D. Liu, Journal of Food Composition and Analysis 89, 103465 (2020).
[5] C. Buchmann, A. Felten, B. Peikert, K. Muñoz, N. Bandow, A. Dag, G.E. Schaumann, Plant Soil 386, 99 (2015).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sullivan Sadzik1, Korz Sven2, Buchmann Christian2, Richling Elke1 and Munoz Katherine2

1TU Kaiserslautern, Department of Chemistry, Division of Food Chemistry and Toxicology
2Universität Koblenz-Landau, Campus Landau, Germany

Contact the author

Keywords

soil, grape pomace, fertilizer, polyphenols, mycotoxins

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.

Three Nebbiolo clone anthocyanin profile as affected by environmental conditions

Vitis vinifera ‘Nebbiolo’ cultivar is a 3’-subsituted anthocyanin prevalent wine variety. It is grown in North-West Italy for the production of high quality ageing wines. In the present work berry skin anthocyanin amounts and profiles of the clones CVT 308, CVT 423 and CVT 142 were studied in 2004 and in 2005 in four environmentally different locations of North-West Italy: Donnas (steep mountain area), Monforte (hilly area, with a pH of 8.1), Vezza (hilly area, with a pH of 8.2) and Lessona (plain area, with a pH of 4.8).

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

How to make a mineral wine? Producers’ representations vs. scientific data

In this video recording of the IVES science meeting 2023, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, Dijon, France) speaks on how to make a mineral wine, producers’ representations vs. scientific data. This presentation is based on an original article accessible for free on OENO One.