IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Benefits and risks of the utilization of grape pomace as organic fertilizers

Benefits and risks of the utilization of grape pomace as organic fertilizers

Abstract

Rhineland-Palatinate is Germany’s largest wine growing region. The recently launched collaborative project in the frame of the ‘Carl-Zeiss-Stiftungs-Kooperationsfonds für Nachhaltigkeitsforschung’ focusses on the risk-benefit assessment of the use of grape pomace (GP) from the region ‘Pfalz’ in Rhineland-Palatinate as a natural fertilizer.GP contains high loads of bioactive compounds such as polyphenols and macro- as well as micronutrients which make GP an attractive, low-cost fertilizer [1,2]. On the other hand, GP may also contain residues of pesticides and mycotoxins. Their presence is undesirable in wine as well as in a potential fertilizer [3,4]. The application of high amounts of the above mentioned substances at once could negatively affect plant quality and microbial soil communities [5]. Therfore, the agricultural value of GP as a fertilizer could be limited by the transfer of these compounds into the soil. Up to date, little is known about the influence of GP constituents on the soil quality and processes, especially in a long-term exposure.In this project, we aim to determine the contents of polyphenols, mycotoxins, and pesticides in addition to the macro- and micronutrient content of GP from six different grape varieties. Furthermore, the effect on important soil parameters, such as nutrient availability, hydrodynaics, and microbiology will be analysed and evaluated.

References

[1] E. Nistor, A. Dobrei, E. Kiss, V. Ciolac, Journal of Horticulture, Forestry and Biotechnology 18, 141 (2014).
[2] C. Fuchs, T. Bakuradze, R. Steinke, R. Grewal, G.P. Eckert, E. Richling, Journal of Functional Foods 70, 103988 (2020).
[3] J.E. Welke, Current Opinion in Food Science 29, 7 (2019).
[4] X. Hou, Z. Xu, Y. Zhao, D. Liu, Journal of Food Composition and Analysis 89, 103465 (2020).
[5] C. Buchmann, A. Felten, B. Peikert, K. Muñoz, N. Bandow, A. Dag, G.E. Schaumann, Plant Soil 386, 99 (2015).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sullivan Sadzik1, Korz Sven2, Buchmann Christian2, Richling Elke1 and Munoz Katherine2

1TU Kaiserslautern, Department of Chemistry, Division of Food Chemistry and Toxicology
2Universität Koblenz-Landau, Campus Landau, Germany

Contact the author

Keywords

soil, grape pomace, fertilizer, polyphenols, mycotoxins

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Study of the interactions between wine anthocyanins and proline rich proteins

The interaction between tannins and salivary proteins is considered to be the basis of the phenomenon of wine astringency. Recently, some authors have revealed that some anthocyanins can also contribute to this mouthfeel sensation by interacting with proline rich proteins (PRPs). However, more studies are needed in order to elucidate the affinity of anthocyanins with these proteins.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

Fruit set rate clonal variation explains yield differences at harvest in Malbec

Malbec is Argentina’s flagship variety, and it is internationally recognized for producing high-quality red wines. Fruit set rate is a major component in grapevine yield determination, and it is the outcome of multiple genetic and environmental interacting variables. Here, we characterized the reproductive performance of 25 Malbec clones grown under homogeneous conditions in a 23-years old experimental plot. We measured traits near flowering (like the number of flowers per inflorescence) and at harvest (including the number of berries per cluster and berry weight), during two consecutive seasons (2022 and 2023).

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.