Terroir 2016 banner
IVES 9 IVES Conference Series 9 Which risk assessment of water quality in pdo vineyards in Burgundy (France)?

Which risk assessment of water quality in pdo vineyards in Burgundy (France)?

Abstract

To meet the demand of assessment tool of water managers we adapted to the vine production the INDIGO® method to developed initially for arable farming at the field scale. This article aims to assess the quality of water in Burgundy areas where viticulture is pointed out to downgrade quality of surface water and groundwater. Knowing production practices at field scale allow locating where changes of production practices could upgrade surface water and groundwater quality.

INDIGO® I-phy indicator of sustainability were built based on different aggregation methods of winegrowers practices and field characteristics with a mark between 0 (risk maximum) and 10 (no risk) and 7 is the acceptable limit for environment. Water modules of I-Phy were tested in three PDO vineyards in Burgundy, in two climate conditions (2011 and 2012). Calculations have been done for I-phy indicator and groundwater (ESO) and surface water (ESU) modules on 32 fields, equally distributed in very high quality and regular quality PDO areas and in integrated or organic/biodynamic systems.

The results lead us to assess water pollution risk in different vineyard conditions. Global risk for environment is low: a very few fields under 7: 6 in 2011 and 7 in 2012 which one field under 3. Most of the global risky fields are in PDO-Rully area.

ESO risk is higher than ESU risk for almost all the fields in the 3 PDO areas. There are 4 reasons explaining the results: (i) active ingredients in used pesticides, even for organic. Active ingredient are classed R50/53. (ii) rate of the active ingredient. (iii) vine growing period of application. (iv) at least, the slope of the fields, the length of the rows, the proximity of a river and the rate of clay in the soil are also important risk factors for ESO risk. Winegrowers in Burgundy are aware of ESO risk and already manage to reduce rate of pesticides and chose the right moment to treat the vine according to the field characteristics.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Marie THIOLLET-SCHOLTUS (1), Katia PIDORENKO (2), Claire PERNET (2)

(1) INRA – SAD – UR-0055-ASTER, 28, rue de Herrlisheim 68000 Colmar France
(2) BIVB, 16, rue du 16e chasseur, 21200 Beaune, France

Contact the author

Keywords

Practices, PDO vineyards, groundwater quality, surface water quality, environmental assessment, INDIGO®

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Les préparations biodynamiques 500 et 501 ont elles un effet sur la vigne ?

Dans le cadre de TerclimPro 2025, Markus Rienth a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8396

Hanseniaspora uvarum and high hydrostatic pressure for improving wine aging on lees

Non-saccharomyces yeasts gained an increased interest in winemaking during the last decades, due to their ability to produce relevant amounts of polysaccharides. Moreover, a significant release of glutathione into the wine during fermentation was also observed with these strains, as well as an improvement of color stability and wine aroma profile. Valuable results have been obtained by hanseniaspora spp. concerning the release of polysaccharides and the production of acetic esters, mainly during fermentation.

Copper contamination in vineyard soils of Bordeaux: spatial risk assessment for the replanting of vines and crops

Copper (Cu) is widely and historically used in viticulture as a fungicide against mildew. Cu has a strong affinity for soil organic matter and accumulates in topsoil horizons. Thus, Cu may negatively affect soil organisms and plants, consequently reducing soil fertility and productivity. The Bordeaux vineyards have the largest vineyard surfaces (26%) within French controlled appellation and a great proportion of French wine production (around 5 million hl per year). Considering the local context of vineyard surfaces decreasing (vine uprooting) and possible new crop plantation, the issue of Cu potential toxicity rises. Therefore, the aims of this work are firstly to evaluate the Cu contamination in vineyard soils of Bordeaux, secondly to produce a risk assessment map for new vine or crop plantation. We used soil analyses from several local studies to build a database with 4496 soil horizon samples. The database was enhanced by means of pedotransfer functions in order to estimate the bioaccessible (EDTA-extractable) Cu in soils of samples without measurements. From this database, 1797 georeferenced samples with CuEDTA concentrations in the topsoil (0-50 cm depth) were used for kriging interpolation in order to produce the spatial distribution map of CuEDTA in vineyard soils. Then, the spatial distribution of Cu was crossed with vine uprooting surfaces and municipality boundaries. CuEDTAconcentrations ranged from 0.52 to 459 mg/kg and showed clear anomalies. Our results from spatial analysis showed that almost 50% of vineyard soil surfaces have CuEDTA concentrations higher than 30 mg/kg (moderate risk for new plantation) and 20% with concentrations higher than 50 mg/kg (high risk for new plantation). A decision-support map based on municipalities was realised to provide a simple tool to stakeholders concerned by land use management.

The evolution of wine appellations in the United States

Le système des appellations d’origine aux Etats-Unis était adopté en 1978 et est entré en vigueur en 1983. Jusqu’à présent, 146 aires viticoles avaient été établies dans 26 états.

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content.