Terroir 2016 banner
IVES 9 IVES Conference Series 9 Which risk assessment of water quality in pdo vineyards in Burgundy (France)?

Which risk assessment of water quality in pdo vineyards in Burgundy (France)?

Abstract

To meet the demand of assessment tool of water managers we adapted to the vine production the INDIGO® method to developed initially for arable farming at the field scale. This article aims to assess the quality of water in Burgundy areas where viticulture is pointed out to downgrade quality of surface water and groundwater. Knowing production practices at field scale allow locating where changes of production practices could upgrade surface water and groundwater quality.

INDIGO® I-phy indicator of sustainability were built based on different aggregation methods of winegrowers practices and field characteristics with a mark between 0 (risk maximum) and 10 (no risk) and 7 is the acceptable limit for environment. Water modules of I-Phy were tested in three PDO vineyards in Burgundy, in two climate conditions (2011 and 2012). Calculations have been done for I-phy indicator and groundwater (ESO) and surface water (ESU) modules on 32 fields, equally distributed in very high quality and regular quality PDO areas and in integrated or organic/biodynamic systems.

The results lead us to assess water pollution risk in different vineyard conditions. Global risk for environment is low: a very few fields under 7: 6 in 2011 and 7 in 2012 which one field under 3. Most of the global risky fields are in PDO-Rully area.

ESO risk is higher than ESU risk for almost all the fields in the 3 PDO areas. There are 4 reasons explaining the results: (i) active ingredients in used pesticides, even for organic. Active ingredient are classed R50/53. (ii) rate of the active ingredient. (iii) vine growing period of application. (iv) at least, the slope of the fields, the length of the rows, the proximity of a river and the rate of clay in the soil are also important risk factors for ESO risk. Winegrowers in Burgundy are aware of ESO risk and already manage to reduce rate of pesticides and chose the right moment to treat the vine according to the field characteristics.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Marie THIOLLET-SCHOLTUS (1), Katia PIDORENKO (2), Claire PERNET (2)

(1) INRA – SAD – UR-0055-ASTER, 28, rue de Herrlisheim 68000 Colmar France
(2) BIVB, 16, rue du 16e chasseur, 21200 Beaune, France

Contact the author

Keywords

Practices, PDO vineyards, groundwater quality, surface water quality, environmental assessment, INDIGO®

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Soil plays an important role in wine quality, especially its water holding capacity because it affects the balance between vigour and grape yield. The aim of this work was to study the influence of different soil types on the must quality in a vineyard at DO Ca Rioja

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.

Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Grapevine, Vitis vinifera, requires grafting on Phylloxera tolerant rootstocks of American origin in most viticultural areas of the world. The most commonly used species in rootstock creation are V. berlandieri, V. riparia and V. rupestris. Rootstocks not only provide tolerance to Phylloxera but assure the supply of water and mineral nutrients to the scion. The objective of this work was to determine to what extent rootstocks of different parentages alter the mineral composition of petioles of grapevine.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

The Australian geographical indication process

The first white settlers arrived in Australia in 1788 and brought grape vine cuttings with them. As migration to Australia continued to grow during the XIX Century more and more vine cuttings, viticulturists and winemakers from Britain, France, Germany, ltaly, Switzerland and Yugoslavia founded their businesses.