IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Characterization and biological effects of extracts from winery by-products

Characterization and biological effects of extracts from winery by-products

Abstract

Pomace, stem, grapevine leaves, and vine shoots arise as so called winery by-products during the wine production process. Due to their high content of secondary plant metabolites, such as polyphenols, their usage as sources of bioactive compounds offers an opportunity to obtain value-added products for the food and pharmaceutical industry. The aim of the present study was to investigate extracts from winery by-products of Vitis vinifera L. cv. Riesling from the region ‚Pfalz‘ in Rhineland-Platinate, Germany with regard to their chemical composition and biological effect in vitro. Total phenolic contents (TPC) of pomace, stem, vine leaf, and vine shoot extracts were determined by Folin-Ciocalteu method and polyphenolic profiles were characterized by HPLC-UV/Vis-ESI-MS/MS. The extracts showed TPCs ranging from 432 to 665 mg GAE/g extract. Besides flavanols, as for example catechin, epicatechin and procyanidins, phenolic acids and flavonols, such as quercetin und kaempferol derivates were tentatively identified, amongst others, by HPLC-UV/Vis-ESI-MS/MS analysis in the negative ion mode. Stilbenes represent an additional group of polyphenols present in the extracts from winery by-products, including trans-resveratrol, piceid, piceatannol and ε-viniferin being identified. In the human hepatocarcinoma cell line HepG2 effects of the extracts on cell viability, intracellular ATP, the mitochondrial membrane potential (MMP), and tert-butyl hydroperoxide (TBH)-induced intracellular reactive oxygen species (ROS) were determined in vitro. Dose-dependent cytotoxic effects were observed besides protective effects regarding TBH-induced intracellular ROS level, and partially impaired MMP. Thus, winery by-products represent interesting sources of bioactive compounds exerting positive and/or negative effects on mitochondrial function in liver cells.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Fuchs Christine1, Bakuradze Tamara1, Stegmüller Simone1, Steinke Regina1 and Richling Elke1

1TU Kaiserslautern, Department of Chemistry, Division of Food Chemistry

Contact the author

Keywords

polyphenols, HPLC-UV/Vis-ESI-MS/MS, extracts of winery by-products, Vitis vinifera L. cf. Riesling, liver cells

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Les terroirs : variae causarum figurae

The jurist feels like an intruder when talking about terroirs. He looks at the press and tries to understand. We can read there about the cooking festival of May 30, 1996 which “..highlights products whose quality depends on a region”, that Camembert du pays d’Auge is the only one to be protected, I was thinking of camembert from Normandy, that 80% of Greek feta is made in the Netherlands, I thought it was in Denmark, and that the European Community protects geographical indications of IGP origin, probably a new category replacing the indications protected areas (1). I also learned that distributors are asking for more local products because “they come to confuse the cards in the part engaged with the big brands”. Carrefour has its “Terroirs and drawers”, Prisunic its “Vent d’Ouest”, Intermarché “Les bouquets du terroir”, Monoprix “Les terroirs de France” (2), Promodés and its brand “Reflets de France” for the “Continent” hypermarkets (3). At the same time it is asserted that “The term is a mere common noun. Unprotectable and therefore unprotected” (4).

Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs.

Assessment of climate change impacts on water needs and growing cycle on grapevine in three DOs of NE Spain

This study assessed the suitability of grapevine growing in three DOs (Empordà, Pla de Bages and Penedès) of Catalonia (NE Spain) over the 21st century. For this purpose, an estimation of water needs and agroclimatic and phenological indicators was made. Climate change impacts were estimated at 1 km pixel resolution using temperature and precipitation projections from several general circulation models (GCM) and two climate change scenarios: RCP 4.5 (stabilization scenario) and RCP 8.5 (worst-case scenario). Potential crop evapotranspiration (following FAO procedure) and a daily water balance considering soil water holding capacity were used to estimate actual evapotranspiration of vines and, finally, water needs. Dynamics would be similar in the three DOs studied although the magnitude of impact differs. Water needs would be 2 and 3 times greater (ranging from 0 to more than 1500 m3/ha) than current water needs at both climate change scenarios. Moreover, blooming date would advance from 3 to 6 weeks, harvest date from 1 to 2.5 months, resulting in growing cycles from 10 to 80 days shorter. It should also be noted that frost risk would decrease from 6 to 76%, the number of days with temperatures above 30ºC during ripening would rise from 48 to 500% and tropical nights (minimum temperature >20ºC) at ripening would increase from 28 to 150%, depending on the scenario and the DOs. The impacts of climate change in the three DOs could result in significant limitations for grapevine cultivation and wine production if adaptive strategies are not applied. This result could serve as a basis for the design of specific and particular adaptation strategies to improve and maintain vineyards in the DOs studied and could be extrapolated to similar DOs and regions.

Riesling as a model to irrigate white wine grape varieties in arid climates

Regulated deficit irrigation (RDI) is a common viticultural practice for wine grape production. In addition to the potential improvement of water use efficiency, the adoption of this technique favors smaller canopies with higher levels of fruit sun exposure, enhancing quality attributes associated with red wine grapes such as smaller berries with higher tannins and anthocyanins. However, these quality attributes do not necessarily transfer to white wine grapes. The goal of this project was to assess whether partial rootzone drying (PRD) is more suited than RDI to grow high-end white wine grapes in arid climates, especially aromatic varieties, using Riesling as a model.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.