IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Characterization and biological effects of extracts from winery by-products

Characterization and biological effects of extracts from winery by-products

Abstract

Pomace, stem, grapevine leaves, and vine shoots arise as so called winery by-products during the wine production process. Due to their high content of secondary plant metabolites, such as polyphenols, their usage as sources of bioactive compounds offers an opportunity to obtain value-added products for the food and pharmaceutical industry. The aim of the present study was to investigate extracts from winery by-products of Vitis vinifera L. cv. Riesling from the region ‚Pfalz‘ in Rhineland-Platinate, Germany with regard to their chemical composition and biological effect in vitro. Total phenolic contents (TPC) of pomace, stem, vine leaf, and vine shoot extracts were determined by Folin-Ciocalteu method and polyphenolic profiles were characterized by HPLC-UV/Vis-ESI-MS/MS. The extracts showed TPCs ranging from 432 to 665 mg GAE/g extract. Besides flavanols, as for example catechin, epicatechin and procyanidins, phenolic acids and flavonols, such as quercetin und kaempferol derivates were tentatively identified, amongst others, by HPLC-UV/Vis-ESI-MS/MS analysis in the negative ion mode. Stilbenes represent an additional group of polyphenols present in the extracts from winery by-products, including trans-resveratrol, piceid, piceatannol and ε-viniferin being identified. In the human hepatocarcinoma cell line HepG2 effects of the extracts on cell viability, intracellular ATP, the mitochondrial membrane potential (MMP), and tert-butyl hydroperoxide (TBH)-induced intracellular reactive oxygen species (ROS) were determined in vitro. Dose-dependent cytotoxic effects were observed besides protective effects regarding TBH-induced intracellular ROS level, and partially impaired MMP. Thus, winery by-products represent interesting sources of bioactive compounds exerting positive and/or negative effects on mitochondrial function in liver cells.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Fuchs Christine1, Bakuradze Tamara1, Stegmüller Simone1, Steinke Regina1 and Richling Elke1

1TU Kaiserslautern, Department of Chemistry, Division of Food Chemistry

Contact the author

Keywords

polyphenols, HPLC-UV/Vis-ESI-MS/MS, extracts of winery by-products, Vitis vinifera L. cf. Riesling, liver cells

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Aims: In previous work, five indigenous Pichia kluyveri strains, GS1-1, FS-2-7, HS-2-1, C730 and C732, were isolated and selected from spontaneous fermented wines from Ningxia and Gansu. The aims of this study were to 1) evaluate resistance of these strains to environmental stressors that may restrict their growth and the progress of alcoholic fermentation; 2) Investigate their fermentation dynamics; 3) Characterise aroma profiles of Cabernet Sauvignon wines made from mixed cultures of P. kluyveri and Saccharomyces cerevisiae.

Phenolic composition of Bordeaux grapes 2009 vintage: comparison with 2006, 2007 and 2008 vintages

‘Cabernet sauvignon’ and ‘Merlot’ are among the most recognized red wine grape cultivars. This work is aimed at investigating the proanthocyanidin composition of skins and seeds to determine the grape variety and the vintage effects on the phenolic composition of Bordeaux grapes.

From bush to glass: unlocking the potential of indigenous microbes in Australian wines

Global trends in the wine industry are changing, which is caused by consumer demands for aroma and flavour innovation. Producers in Australia, the sixth globally ranked wine producing country, are embracing this trend by exploring non-conventional yeast species to improve sensory qualities and achieve fermentation advantages.

Blend wines made of Syrah, Marselan and Tannat, had better color and more phenolic diversity than varietal wines

Background: Elaborating red-wines from grape cultivars with different polyphenolic profiles could improve wine color and its phenolic-dependent characteristics

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).