IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Characterization and biological effects of extracts from winery by-products

Characterization and biological effects of extracts from winery by-products

Abstract

Pomace, stem, grapevine leaves, and vine shoots arise as so called winery by-products during the wine production process. Due to their high content of secondary plant metabolites, such as polyphenols, their usage as sources of bioactive compounds offers an opportunity to obtain value-added products for the food and pharmaceutical industry. The aim of the present study was to investigate extracts from winery by-products of Vitis vinifera L. cv. Riesling from the region ‚Pfalz‘ in Rhineland-Platinate, Germany with regard to their chemical composition and biological effect in vitro. Total phenolic contents (TPC) of pomace, stem, vine leaf, and vine shoot extracts were determined by Folin-Ciocalteu method and polyphenolic profiles were characterized by HPLC-UV/Vis-ESI-MS/MS. The extracts showed TPCs ranging from 432 to 665 mg GAE/g extract. Besides flavanols, as for example catechin, epicatechin and procyanidins, phenolic acids and flavonols, such as quercetin und kaempferol derivates were tentatively identified, amongst others, by HPLC-UV/Vis-ESI-MS/MS analysis in the negative ion mode. Stilbenes represent an additional group of polyphenols present in the extracts from winery by-products, including trans-resveratrol, piceid, piceatannol and ε-viniferin being identified. In the human hepatocarcinoma cell line HepG2 effects of the extracts on cell viability, intracellular ATP, the mitochondrial membrane potential (MMP), and tert-butyl hydroperoxide (TBH)-induced intracellular reactive oxygen species (ROS) were determined in vitro. Dose-dependent cytotoxic effects were observed besides protective effects regarding TBH-induced intracellular ROS level, and partially impaired MMP. Thus, winery by-products represent interesting sources of bioactive compounds exerting positive and/or negative effects on mitochondrial function in liver cells.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Fuchs Christine1, Bakuradze Tamara1, Stegmüller Simone1, Steinke Regina1 and Richling Elke1

1TU Kaiserslautern, Department of Chemistry, Division of Food Chemistry

Contact the author

Keywords

polyphenols, HPLC-UV/Vis-ESI-MS/MS, extracts of winery by-products, Vitis vinifera L. cf. Riesling, liver cells

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

Response of the plant: a chief element for the characterisation of wine-growing “terroirs”

Face au risque de banalisation des produits agroalimentaires, un intérêt toujours plus marqué se développe en faveur des produits du terroir.

The role of rootstock and its genetic background in plant mineral status

In this video recording of the IVES science meeting 2025, Marine Morel (EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave-d’Ornon, France) speaks about the role of rootstock and its genetic background in plant mineral status. This presentation is based on an original article accessible for free on OENO One.

Digitization for automation–A frost management case study

The need to mitigate the yield impact of Spring frosts in vineyards remains a significant challenge around the world.