IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

Abstract

The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas). Depending on their concentrations and interactions with other molecules, aromatic compounds contribute, to different extents, to the final bouquet of the wines. The analysis of the profile of volatile compounds of a wine can help exploring the chemical link between the product and the terroir from which it originates. Indeed, when referring to the concept of terroir, grape variety expression in wine results from an interaction between the place (climate, soil) and the people (tradition, viticultural practices and winemaking) [2,3]. These parameters can influence the final concentration of aromas, thus contributing to the overall sensory perception. To explore the influence of “terroir” factors on the aromatic and sensory profile of wines, red wines from the AOC Corbières were subjected to a global aromatic and sensory analysis. The aim is to identify the “molecular markers” that can characterise the different wines and to assess whether these markers are related to each other and explained by their area of origin. The aromatic profile was evaluated by HS-SPME-GC-MS and the sensory analysis was performed by a QDA (Quantitative Descriptive Analysis) profile method.  The terroir and winemaking parameters (type of winemaking, yeast, blending) were considered and multifactorial analysis were performed to link these data to the aromatic and/or sensory profiles. Statistical analysis highlight differences either between the samples and the study areas. Differences in the aroma profile were mainly attributed to some fermentative (e.g. acetate and ethyl esters) and varietal (e.g. terpenols and C13-norisoprenoids) aromas. Sensory analysis showed significant differences between samples on some quality descriptors (e.g. cooked red fruit). New interpretation leads are being explored to connect these first results to future experiments.The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas). Depending on their concentrations and interactions with other molecules, aromatic compounds contribute, to different extents, to the final bouquet of the wines. The analysis of the profile of volatile compounds of a wine can help exploring the chemical link between the product and the terroir from which it originates. Indeed, when referring to the concept of terroir, grape variety expression in wine results from an interaction between the place (climate, soil) and the people (tradition, viticultural practices and winemaking) [2,3]. These parameters can influence the final concentration of aromas, thus contributing to the overall sensory perception. To explore the influence of “terroir” factors on the aromatic and sensory profile of wines, red wines from the AOC Corbières were subjected to a global aromatic and sensory analysis. The aim is to identify the “molecular markers” that can characterise the different wines and to assess whether these markers are related to each other and explained by their area of origin. The aromatic profile was evaluated by HS-SPME-GC-MS and the sensory analysis was performed by a QDA (Quantitative Descriptive Analysis) profile method.  The terroir and winemaking parameters (type of winemaking, yeast, blending) were considered and multifactorial analysis were performed to link these data to the aromatic and/or sensory profiles. Statistical analysis highlight differences either between the samples and the study areas. Differences in the aroma profile were mainly attributed to some fermentative (e.g. acetate and ethyl esters) and varietal (e.g. terpenols and C13-norisoprenoids) aromas. Sensory analysis showed significant differences between samples on some quality descriptors (e.g. cooked red fruit). New interpretation leads are being explored to connect these first results to future experiments.

References

[1] Falqué, E., Fernandez, E., & Dubourdieu, D. (2001). Differentiation of white wines by their aromatic index. Talanta, 54, 271–281.
[2] Kustos, M., Gambetta, J., Jeffery, D.W., Heymann, H., Goodman, S., & Bastiana, S.E.P. (2020). A matter of place: Sensory and chemical characterisation of fine Australian Chardonnay and Shiraz wines of provenance. Food Research International, 130, 2-11.
[3] Vaudour, E. (2002). The quality of grapes and wine in relation to geography: Notions of terroir at various scales. Journal of Wine Research, 13(2), 117–141.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Argentero Alice1, Caille Soline1, Nolleau Valérie1, Godet Teddy1, Verneuil Catherine2, Mouls Laetitia1 and Rigou Peggy1

1UMR SPO, Univ Montpellier, INRAE, Institut Agro
2Syndicat Général de l’AOC Corbières

List of affiliations ¹ ² ³

Contact the author

Keywords

Terroir, molecular marker, Aroma compounds, HS-SPME-GC-MS, Sensorial analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

AIM This work aims to investigate fluorescence spectroscopy as a tool to assess grape homogenates to discriminate between samples of varying maturities and to develop an index to objectively characterise the level of grape heterogeneity present in any given vineyard.

EFFECT OF DIFFERENT VITICULTURAL AND ENOLOGICAL PRACTICES ON THE PHENOLIC COMPOSITION OF RED WINES

Global climate change is exerting a notable influence on viticulture sector and grape composition. The increase in temperature and the changes in rainfall pattern are causing a gap between phenolic and technological grape maturities [1]. As a result, the composition of grapes at harvest time and, consequently, that of wines are being affected, especially with regards to phenolic composition. Hence, wine quality is decreasing due to changes in the organoleptic properties, such as color and astringency, making necessary to implement new adaptive technologies in wineries to modulate these properties in order to improve wine quality.

High and extreme high temperature effects on shiraz berry composition 

Climate change is leading to a rise in average temperature and in the frequency and severity of heatwaves, and is already significantly disturbing grapevine phenology and berry composition. With the evolution of the weather of Australian grape growing regions that are already warm and hot, flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted. These compounds include anthocyanins and tannins which contribute substantially to grape and wine quality. The goals of this project were to determine if berry tannin accumulation is sensitive to high temperature and to enhance knowledge on upper temperature limits for viable wine production, in turn informing critical timing for mitigation strategies.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.

Response to powdery and downy mildew of varieties with disease resistance genes (PIWI)

Erysiphe necator and Plasmopara viticola are the causal agents of powdery and downy mildew on grapevines, leading to significant economic losses. Numerous chemical treatments are applied to control these diseases, leading to environmental problems and the appearance of resistance to these products. Therefore, the study of new strategies to achieve the objectives of sustainable development is a priority. In this sense, the use of new varieties resistant to these diseases may be an option of interest. The objective of this work was to analyze the degree of resistance of 9 varieties with downy mildew resistance genes (Rpv3 and/or Rpv12), four of which also carry a powdery mildew resistance gene (Ren 1) by in vitro inoculation assays.