IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

Abstract

The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas). Depending on their concentrations and interactions with other molecules, aromatic compounds contribute, to different extents, to the final bouquet of the wines. The analysis of the profile of volatile compounds of a wine can help exploring the chemical link between the product and the terroir from which it originates. Indeed, when referring to the concept of terroir, grape variety expression in wine results from an interaction between the place (climate, soil) and the people (tradition, viticultural practices and winemaking) [2,3]. These parameters can influence the final concentration of aromas, thus contributing to the overall sensory perception. To explore the influence of “terroir” factors on the aromatic and sensory profile of wines, red wines from the AOC Corbières were subjected to a global aromatic and sensory analysis. The aim is to identify the “molecular markers” that can characterise the different wines and to assess whether these markers are related to each other and explained by their area of origin. The aromatic profile was evaluated by HS-SPME-GC-MS and the sensory analysis was performed by a QDA (Quantitative Descriptive Analysis) profile method.  The terroir and winemaking parameters (type of winemaking, yeast, blending) were considered and multifactorial analysis were performed to link these data to the aromatic and/or sensory profiles. Statistical analysis highlight differences either between the samples and the study areas. Differences in the aroma profile were mainly attributed to some fermentative (e.g. acetate and ethyl esters) and varietal (e.g. terpenols and C13-norisoprenoids) aromas. Sensory analysis showed significant differences between samples on some quality descriptors (e.g. cooked red fruit). New interpretation leads are being explored to connect these first results to future experiments.The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas). Depending on their concentrations and interactions with other molecules, aromatic compounds contribute, to different extents, to the final bouquet of the wines. The analysis of the profile of volatile compounds of a wine can help exploring the chemical link between the product and the terroir from which it originates. Indeed, when referring to the concept of terroir, grape variety expression in wine results from an interaction between the place (climate, soil) and the people (tradition, viticultural practices and winemaking) [2,3]. These parameters can influence the final concentration of aromas, thus contributing to the overall sensory perception. To explore the influence of “terroir” factors on the aromatic and sensory profile of wines, red wines from the AOC Corbières were subjected to a global aromatic and sensory analysis. The aim is to identify the “molecular markers” that can characterise the different wines and to assess whether these markers are related to each other and explained by their area of origin. The aromatic profile was evaluated by HS-SPME-GC-MS and the sensory analysis was performed by a QDA (Quantitative Descriptive Analysis) profile method.  The terroir and winemaking parameters (type of winemaking, yeast, blending) were considered and multifactorial analysis were performed to link these data to the aromatic and/or sensory profiles. Statistical analysis highlight differences either between the samples and the study areas. Differences in the aroma profile were mainly attributed to some fermentative (e.g. acetate and ethyl esters) and varietal (e.g. terpenols and C13-norisoprenoids) aromas. Sensory analysis showed significant differences between samples on some quality descriptors (e.g. cooked red fruit). New interpretation leads are being explored to connect these first results to future experiments.

References

[1] Falqué, E., Fernandez, E., & Dubourdieu, D. (2001). Differentiation of white wines by their aromatic index. Talanta, 54, 271–281.
[2] Kustos, M., Gambetta, J., Jeffery, D.W., Heymann, H., Goodman, S., & Bastiana, S.E.P. (2020). A matter of place: Sensory and chemical characterisation of fine Australian Chardonnay and Shiraz wines of provenance. Food Research International, 130, 2-11.
[3] Vaudour, E. (2002). The quality of grapes and wine in relation to geography: Notions of terroir at various scales. Journal of Wine Research, 13(2), 117–141.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Argentero Alice1, Caille Soline1, Nolleau Valérie1, Godet Teddy1, Verneuil Catherine2, Mouls Laetitia1 and Rigou Peggy1

1UMR SPO, Univ Montpellier, INRAE, Institut Agro
2Syndicat Général de l’AOC Corbières

List of affiliations ¹ ² ³

Contact the author

Keywords

Terroir, molecular marker, Aroma compounds, HS-SPME-GC-MS, Sensorial analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

High resolution climatic zoning of the Portuguese viticultural regions

Viticulture and winemaking represent a key sector for the Portuguese economy. As grapevines are strongly governed by atmospheric factors, climate change may impose a major threat to this crop. In this study, the current-past (1950-2000) and future (2041-2070) climatic conditions in Portugal are analyzed using a number of bioclimatic indices, including a new categorized index (CatI).

Impact of aspects of the polysaccharide structure of mannoproteins on their interactions with Enological Tannins

Mannoproteins (MPs) with different structure of their polysaccharide part (branching, substitutions, …) were used to better understand the impact of characteristics of the usual structure of MPs when interacting with Grape Seed Tannins (ST). 

The soil biodiversity as a support to environmental sustainability in vineyard

The environmental biodiversity is important to guarantee essential services to the living communities, its richness is a symptom of a minor disturbance and improves he environment biological quality.

Comparison of genotype x environment interaction of clonal and polyclonal grapevine selected materials

Conserving and exploring the intra-varietal diversity of ancient varieties is essential to foster their use in the future, preserving the traditions and history of ancient growing regions and their wines. The conservation of representative samples of ancient varieties and the utilization of intra-varietal variability through polyclonal selection are advisable strategies to save and promote the cultivation of each variety, respectively.

Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast Assimilable Nitrogen and Sugar content.

Hydroxytyrosol (HT) is well known for its potent antioxidant activity and anticarcinogenic, antimicrobial, cardioprotective and neuroprotective properties. One possible explanation to its origin in wines is the synthesis from tyrosol, which in turn is produced from the Ehrlich pathway by yeasts. This work aims to explore the factors that could increase the final content as the initial concentration of yeast assimilable nitrogen (YAN) and sugar. Two different concentrations of YAN were proved between 210mg/L and 300 mg/L. Additionally, two different concentrations of sugar were used: 100g/L and 240 g/L. Alcoholic fermentations in synthetic must were performed with the strain QA23.