IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

Abstract

The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas). Depending on their concentrations and interactions with other molecules, aromatic compounds contribute, to different extents, to the final bouquet of the wines. The analysis of the profile of volatile compounds of a wine can help exploring the chemical link between the product and the terroir from which it originates. Indeed, when referring to the concept of terroir, grape variety expression in wine results from an interaction between the place (climate, soil) and the people (tradition, viticultural practices and winemaking) [2,3]. These parameters can influence the final concentration of aromas, thus contributing to the overall sensory perception. To explore the influence of “terroir” factors on the aromatic and sensory profile of wines, red wines from the AOC Corbières were subjected to a global aromatic and sensory analysis. The aim is to identify the “molecular markers” that can characterise the different wines and to assess whether these markers are related to each other and explained by their area of origin. The aromatic profile was evaluated by HS-SPME-GC-MS and the sensory analysis was performed by a QDA (Quantitative Descriptive Analysis) profile method.  The terroir and winemaking parameters (type of winemaking, yeast, blending) were considered and multifactorial analysis were performed to link these data to the aromatic and/or sensory profiles. Statistical analysis highlight differences either between the samples and the study areas. Differences in the aroma profile were mainly attributed to some fermentative (e.g. acetate and ethyl esters) and varietal (e.g. terpenols and C13-norisoprenoids) aromas. Sensory analysis showed significant differences between samples on some quality descriptors (e.g. cooked red fruit). New interpretation leads are being explored to connect these first results to future experiments.The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas). Depending on their concentrations and interactions with other molecules, aromatic compounds contribute, to different extents, to the final bouquet of the wines. The analysis of the profile of volatile compounds of a wine can help exploring the chemical link between the product and the terroir from which it originates. Indeed, when referring to the concept of terroir, grape variety expression in wine results from an interaction between the place (climate, soil) and the people (tradition, viticultural practices and winemaking) [2,3]. These parameters can influence the final concentration of aromas, thus contributing to the overall sensory perception. To explore the influence of “terroir” factors on the aromatic and sensory profile of wines, red wines from the AOC Corbières were subjected to a global aromatic and sensory analysis. The aim is to identify the “molecular markers” that can characterise the different wines and to assess whether these markers are related to each other and explained by their area of origin. The aromatic profile was evaluated by HS-SPME-GC-MS and the sensory analysis was performed by a QDA (Quantitative Descriptive Analysis) profile method.  The terroir and winemaking parameters (type of winemaking, yeast, blending) were considered and multifactorial analysis were performed to link these data to the aromatic and/or sensory profiles. Statistical analysis highlight differences either between the samples and the study areas. Differences in the aroma profile were mainly attributed to some fermentative (e.g. acetate and ethyl esters) and varietal (e.g. terpenols and C13-norisoprenoids) aromas. Sensory analysis showed significant differences between samples on some quality descriptors (e.g. cooked red fruit). New interpretation leads are being explored to connect these first results to future experiments.

References

[1] Falqué, E., Fernandez, E., & Dubourdieu, D. (2001). Differentiation of white wines by their aromatic index. Talanta, 54, 271–281.
[2] Kustos, M., Gambetta, J., Jeffery, D.W., Heymann, H., Goodman, S., & Bastiana, S.E.P. (2020). A matter of place: Sensory and chemical characterisation of fine Australian Chardonnay and Shiraz wines of provenance. Food Research International, 130, 2-11.
[3] Vaudour, E. (2002). The quality of grapes and wine in relation to geography: Notions of terroir at various scales. Journal of Wine Research, 13(2), 117–141.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Argentero Alice1, Caille Soline1, Nolleau Valérie1, Godet Teddy1, Verneuil Catherine2, Mouls Laetitia1 and Rigou Peggy1

1UMR SPO, Univ Montpellier, INRAE, Institut Agro
2Syndicat Général de l’AOC Corbières

List of affiliations ¹ ² ³

Contact the author

Keywords

Terroir, molecular marker, Aroma compounds, HS-SPME-GC-MS, Sensorial analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The myth of the universal rootstock revisited: assessment of the importance of interactions between scion and rootstock

Aim‐ Rootstocks provide protection against soil borne pests and are a powerful tool to manipulate growth, fruit composition and wine quality attributes

Evaluation of viticultural measures to delay ripening of Vitis vinifera ‘Grüner Veltliner’

Context and purpose of the study. `Grüner Veltliner´ is the most important Austrian white quality wine variety, which is mainly used to produce primary fruity wines.

Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

AIM: Biofilm is a resistance mechanism deployed by microorganisms to adapt to stresses, leading to their persistence in the environment. In the case of Brettanomyces bruxellensis, a wine spoilage yeast, knowledge about its capacity to form biofilm remains limited although this potential strategy could explain its recurring presence in cellars.

Consumer acceptance of sweet wines produced by stopping fermentation with octanoic and decanoic acids

The use of medium chain fatty acids for arresting the fermentation and producing sweet wines was investigated at industrial level. Doses of 10 mg/l of octanoic or decanoic acid and a combination of 5+5 mg/l octanoic and decanoic acid were used to produce sweet wines of tamaioasa romanească variety in volumes of 3000 l.

Key learnings about the chemical bases of wine uniqueness and quality, essential companions for future developments

This presentation aims to demonstrate that the value attributed to wine as we today know it is based on three factors: 1) sensory balance, 2) personality, and 3) bioactivity.