IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

Abstract

The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas). Depending on their concentrations and interactions with other molecules, aromatic compounds contribute, to different extents, to the final bouquet of the wines. The analysis of the profile of volatile compounds of a wine can help exploring the chemical link between the product and the terroir from which it originates. Indeed, when referring to the concept of terroir, grape variety expression in wine results from an interaction between the place (climate, soil) and the people (tradition, viticultural practices and winemaking) [2,3]. These parameters can influence the final concentration of aromas, thus contributing to the overall sensory perception. To explore the influence of “terroir” factors on the aromatic and sensory profile of wines, red wines from the AOC Corbières were subjected to a global aromatic and sensory analysis. The aim is to identify the “molecular markers” that can characterise the different wines and to assess whether these markers are related to each other and explained by their area of origin. The aromatic profile was evaluated by HS-SPME-GC-MS and the sensory analysis was performed by a QDA (Quantitative Descriptive Analysis) profile method.  The terroir and winemaking parameters (type of winemaking, yeast, blending) were considered and multifactorial analysis were performed to link these data to the aromatic and/or sensory profiles. Statistical analysis highlight differences either between the samples and the study areas. Differences in the aroma profile were mainly attributed to some fermentative (e.g. acetate and ethyl esters) and varietal (e.g. terpenols and C13-norisoprenoids) aromas. Sensory analysis showed significant differences between samples on some quality descriptors (e.g. cooked red fruit). New interpretation leads are being explored to connect these first results to future experiments.The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas). Depending on their concentrations and interactions with other molecules, aromatic compounds contribute, to different extents, to the final bouquet of the wines. The analysis of the profile of volatile compounds of a wine can help exploring the chemical link between the product and the terroir from which it originates. Indeed, when referring to the concept of terroir, grape variety expression in wine results from an interaction between the place (climate, soil) and the people (tradition, viticultural practices and winemaking) [2,3]. These parameters can influence the final concentration of aromas, thus contributing to the overall sensory perception. To explore the influence of “terroir” factors on the aromatic and sensory profile of wines, red wines from the AOC Corbières were subjected to a global aromatic and sensory analysis. The aim is to identify the “molecular markers” that can characterise the different wines and to assess whether these markers are related to each other and explained by their area of origin. The aromatic profile was evaluated by HS-SPME-GC-MS and the sensory analysis was performed by a QDA (Quantitative Descriptive Analysis) profile method.  The terroir and winemaking parameters (type of winemaking, yeast, blending) were considered and multifactorial analysis were performed to link these data to the aromatic and/or sensory profiles. Statistical analysis highlight differences either between the samples and the study areas. Differences in the aroma profile were mainly attributed to some fermentative (e.g. acetate and ethyl esters) and varietal (e.g. terpenols and C13-norisoprenoids) aromas. Sensory analysis showed significant differences between samples on some quality descriptors (e.g. cooked red fruit). New interpretation leads are being explored to connect these first results to future experiments.

References

[1] Falqué, E., Fernandez, E., & Dubourdieu, D. (2001). Differentiation of white wines by their aromatic index. Talanta, 54, 271–281.
[2] Kustos, M., Gambetta, J., Jeffery, D.W., Heymann, H., Goodman, S., & Bastiana, S.E.P. (2020). A matter of place: Sensory and chemical characterisation of fine Australian Chardonnay and Shiraz wines of provenance. Food Research International, 130, 2-11.
[3] Vaudour, E. (2002). The quality of grapes and wine in relation to geography: Notions of terroir at various scales. Journal of Wine Research, 13(2), 117–141.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Argentero Alice1, Caille Soline1, Nolleau Valérie1, Godet Teddy1, Verneuil Catherine2, Mouls Laetitia1 and Rigou Peggy1

1UMR SPO, Univ Montpellier, INRAE, Institut Agro
2Syndicat Général de l’AOC Corbières

List of affiliations ¹ ² ³

Contact the author

Keywords

Terroir, molecular marker, Aroma compounds, HS-SPME-GC-MS, Sensorial analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years.

Metabolomics of grape polyphenols as a consequence of post-harvest drying: on-plant dehydration vs warehouse withering

A method of suspect screening analysis to study grape metabolomics, was developed [1]. By performing ultra-high performance liquid chromatography (UHPLC) – high-resolution mass spectrometry (HRMS) analysis of the grape extract, averaging 320-450 putative grape compounds are identified which include mainly polyphenols. Identification of metabolites is performed by a new HRMS-database of putative grape and wine compounds expressly constructed (GrapeMetabolomics) which currently includes around 1,100 entries.

Spur-pruning cordon for ‘Barbera’ vines in Piedmont

The traditional pruning system in Piedmont (North-West Italy) is the Guyot system; it requires trained personnel, difficult to find, and it does not permit the mechanization of winter pruning, thus it is very expensive. An alternative technique that could allow the reduction of the vineyard management costs could be the spur-pruning which is simpler to perform and fully mechanized.

The effect of ultrasounds in syrah wine quality is not dependent on the ripening or sanitary status of the grapes

Different studies have demonstrated that the application of ultrasounds (US) to crushed grapes improves chromatic characteristics of the wines (1,2), increases their polysaccharide content (3) and some aroma compounds are also favored (4,5)

Exploring the mechanisms of grapevine single berry development and ripening

The strategy of single berry phenotyping is a recently rediscovered research tool that has gained great attention. The latest studies have indicated that previous physiological models based on pooling asynchronous populations of berries provided biased or blurred information on berry development key players. The possibility of monitoring and sampling single synchronized berries to study their development sequentially has opened new lines of research aimed at unraveling the genes that regulate grapevine fruit development. This study aimed to decipher the gene pathways responsible for the activation/deactivation of physiological processes involved in the green phase of growth, the onset of ripening, and the second growth phase.