IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Abstract

Acidity is often touted as a predictor of wine ageability, though surprisingly few studies have systematically investigated the chemical basis for this claim. The effects of pH on the rates of several key reactions in the wine oxidation pathway were evaluated in model wine. Wine oxidation starts with the redox cycling of iron between two oxidation states: iron(II) is oxidized by oxygen while iron(III) is reduced by phenols. While iron(III) reduction slowed as pH was increased from 3 to 4, oxygen consumption by iron(II) accelerated. However, pseudo-first order rate constants for oxygen consumption remained at least ten times lower than those of iron(III) reduction, suggesting that iron(II) oxidation is the rate-determining reaction for wine oxidation, and wine aging is thus limited by oxygen ingress. Despite this, different wines subject to the same oxidative conditions will often vary in their rate of maturation, indicating another control point “downstream” in the oxidation pathway. Hydrogen peroxide formed upon the reduction of oxygen can react in one of two ways: the iron-catalyzed Fenton oxidation of ethanol into acetaldehyde, or quenching by sulfur dioxide. Acetaldehyde production from added H2O2 was faster at pH 4 than at pH 3, while the efficacy of SO2 as an antioxidant was diminished, lending credence to the notion that high-pH wines deteriorate more quickly than more acidic wines. These observations may be explained by the pH-dependent complexation of iron by tartrate and other carboxylic acids in wine, which determines the reduction potential of iron and controls its reactivity. Findings overall suggest viticultural and winemaking practices, as they pertain to the management of wine acidity, may have significant long-term repercussions on aging.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Nguyen Thi1

1Weincampus Neustadt, Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR), Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

wine ageing, oxidation, iron, acidity, Fenton

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring the inhibitor effect of different commercial chitosan-based preparations on malolactic fermentation in rosé wine

Chitosan is a natural polymer of β-D-linked N-acetyl-D-glucosamine units (1,2), that has only recently been approved by OIV for its use in winemaking to help with microbial control, metal chelation, clarification, and reducing contaminants.

Comparison of tannin analysis by protein precipitation and normal-phase HPLC

Tannins are a heterogenous class of polymeric phenolics found in grapes, oak barrels and wine. In red wine tannins are primarily responsible for astringency, though they also have an important role in reacting with and stabilizing pigments. There are numerous sub-classes of tannins found in wine but they all share structural heterogeneity within each sub-class, with varied polymer composition, configuration and length.

Numerous methodologies exist for the quantification of tannins, however, protein precipitation using bovine serum albumin has proved itself useful due to its strong correlation to the sensory perception of astringency and the basic instruments required for the method. Though the method can yield valuable insights into tannin composition, it cannot be automated easily and necessitates well-trained personnel.

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

Influence of spraying of copper fungicides on physiological parameters of Vitis vinifera L. Cv. ‘Merlot’

Vine downy mildew is one of the most frequent diseases in intensive vineyards. Bordeaux mixture (B.m.), in order to control the disease has been applied onto vineyards since the end of the 19th century. The intensive use of Cu-fungicides could influence the physiology of grapevine. It is also possible that high amounts of foliar Cu sprays trigger stress responses in vine leaves.

Natural sparkling wine pétillant naturel: technological features and sensory profile

The article presents the results of a study on the technological features of producing sparkling wines of the Pétillant Naturel (Pet-Nat) type, made using the ancestral method from the Muscat Ottonel and Pinot Noir grape varieties.