IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Abstract

Acidity is often touted as a predictor of wine ageability, though surprisingly few studies have systematically investigated the chemical basis for this claim. The effects of pH on the rates of several key reactions in the wine oxidation pathway were evaluated in model wine. Wine oxidation starts with the redox cycling of iron between two oxidation states: iron(II) is oxidized by oxygen while iron(III) is reduced by phenols. While iron(III) reduction slowed as pH was increased from 3 to 4, oxygen consumption by iron(II) accelerated. However, pseudo-first order rate constants for oxygen consumption remained at least ten times lower than those of iron(III) reduction, suggesting that iron(II) oxidation is the rate-determining reaction for wine oxidation, and wine aging is thus limited by oxygen ingress. Despite this, different wines subject to the same oxidative conditions will often vary in their rate of maturation, indicating another control point “downstream” in the oxidation pathway. Hydrogen peroxide formed upon the reduction of oxygen can react in one of two ways: the iron-catalyzed Fenton oxidation of ethanol into acetaldehyde, or quenching by sulfur dioxide. Acetaldehyde production from added H2O2 was faster at pH 4 than at pH 3, while the efficacy of SO2 as an antioxidant was diminished, lending credence to the notion that high-pH wines deteriorate more quickly than more acidic wines. These observations may be explained by the pH-dependent complexation of iron by tartrate and other carboxylic acids in wine, which determines the reduction potential of iron and controls its reactivity. Findings overall suggest viticultural and winemaking practices, as they pertain to the management of wine acidity, may have significant long-term repercussions on aging.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Nguyen Thi1

1Weincampus Neustadt, Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR), Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

wine ageing, oxidation, iron, acidity, Fenton

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Precision viticultural strategy for managing intra-vineyard variability in grape aroma using UAV-based vigour indices

In several cultivars, such as Gewürztraminer and Riesling, grape and wine aromas are determined by volatile terpenoids.

Territoires et zones viticoles. Aspects climatiques, pédologiques, agronomiques. Caractérisation des terroirs viticoles: une étude systémique

On assiste actuellement à l’émergence d’une demande sociale forte à l’égard de fonctions par ailleurs traditionnelles de l’agriculture, qui concernent la gestion des ressources du milieu, le maintien d’un tissu social rural, la valorisation des territoires ruraux et l’entretien des paysages.

Enological potential of red grapes: cultivars and geographic origin of vineyards

The study of technologic and phenolic maturation is very efficient to determinate quality potential of red grapes cultivars and clones under different maturity levels or geographic origins

Landscape study of the Suzette rural district. A vineyard in the heart of the Dentelles de Montmirail

Le territoire de Suzette se développe sur un grand coteau viticole et boisé situé au cœur du site naturel des Dentelles de Montmirail (40km au nord d’Avignon). Ce site est à la fois l’un des pôles d’attraction touristique du département et le lieu d’une production viticole renommée (Gigondas, Vacqueyras, Beaumes de Venise, … ). Cet ensemble remarquable de terrasses viticoles et de crêtes rocheuses et boisées, forme un des paysages emblématiques du Vaucluse. La commune est actuellement soumise à une importante pression foncière due à une forte demande résidentielle. Le paysage du coteau forme et possède de ce fait un patrimoine culturel de valeur et une image de marque importante pour la production viticole locale.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.