IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Abstract

Acidity is often touted as a predictor of wine ageability, though surprisingly few studies have systematically investigated the chemical basis for this claim. The effects of pH on the rates of several key reactions in the wine oxidation pathway were evaluated in model wine. Wine oxidation starts with the redox cycling of iron between two oxidation states: iron(II) is oxidized by oxygen while iron(III) is reduced by phenols. While iron(III) reduction slowed as pH was increased from 3 to 4, oxygen consumption by iron(II) accelerated. However, pseudo-first order rate constants for oxygen consumption remained at least ten times lower than those of iron(III) reduction, suggesting that iron(II) oxidation is the rate-determining reaction for wine oxidation, and wine aging is thus limited by oxygen ingress. Despite this, different wines subject to the same oxidative conditions will often vary in their rate of maturation, indicating another control point “downstream” in the oxidation pathway. Hydrogen peroxide formed upon the reduction of oxygen can react in one of two ways: the iron-catalyzed Fenton oxidation of ethanol into acetaldehyde, or quenching by sulfur dioxide. Acetaldehyde production from added H2O2 was faster at pH 4 than at pH 3, while the efficacy of SO2 as an antioxidant was diminished, lending credence to the notion that high-pH wines deteriorate more quickly than more acidic wines. These observations may be explained by the pH-dependent complexation of iron by tartrate and other carboxylic acids in wine, which determines the reduction potential of iron and controls its reactivity. Findings overall suggest viticultural and winemaking practices, as they pertain to the management of wine acidity, may have significant long-term repercussions on aging.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Nguyen Thi1

1Weincampus Neustadt, Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR), Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

wine ageing, oxidation, iron, acidity, Fenton

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Changes in white wine composition after treatment with cationic exchange resin: impact on wine oxidation after 8 years of bottle storage

Samples from 3 wine types were treated with a cationic exchange resin (7 lots) and stored for 8 years (47 samples). Forty-seven parameters were determined, including (1) important substrates with impact in white wine oxidation and (2) markers of oxidation. From group 1, sugars, elements, phenolic compounds, α-dicarbonyls and SO2 and from group 2, browning (A420), acetaldehyde, alkanals, furanic compounds were quantified.

Generation and characterization of a training population in Vitis vinifera for enhanced genomic selection

Context and purpose of the study. Modern viticulture is facing significant challenges due to global climate changes, spanning from extreme heat spells and water scarcity to the acceleration of grapevine’s phenological development with important consequences from budbreak to harvest.

Sensory and consumer perceptions, and consumption barriers of low and no-alcohol wines in Trentino/Alto Adige

The growing demand for non-alcoholic beverages, driven by health-conscious consumers and shifting social norms, has positioned dealcoholized wines as a promising alternative in the global beverage industry (Akhtar et al., 2025, in press; Kakroo, 2024).

The effect of rootstock on water relations and gas exchange of Vitis vinifera cv. Xinomavro

The effect of two rootstocks of different drought tolerance (1103 Paulsen and 3309 Couderc) on sap flow, water relations and gas exchange of cv. Xinomavro (Vitis vinifera L.) was investigated during the 2005 season in Naoussa, Greece. Soil was maintained at field capacity for both rootstock treatments until mid July when a restricted water regime was applied by irrigation cutoff. Sap flow diurnals for the Xinomavro-1103P combination showed a rapid decrease of flow after midday, under water stress conditions.

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.