IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Abstract

Acidity is often touted as a predictor of wine ageability, though surprisingly few studies have systematically investigated the chemical basis for this claim. The effects of pH on the rates of several key reactions in the wine oxidation pathway were evaluated in model wine. Wine oxidation starts with the redox cycling of iron between two oxidation states: iron(II) is oxidized by oxygen while iron(III) is reduced by phenols. While iron(III) reduction slowed as pH was increased from 3 to 4, oxygen consumption by iron(II) accelerated. However, pseudo-first order rate constants for oxygen consumption remained at least ten times lower than those of iron(III) reduction, suggesting that iron(II) oxidation is the rate-determining reaction for wine oxidation, and wine aging is thus limited by oxygen ingress. Despite this, different wines subject to the same oxidative conditions will often vary in their rate of maturation, indicating another control point “downstream” in the oxidation pathway. Hydrogen peroxide formed upon the reduction of oxygen can react in one of two ways: the iron-catalyzed Fenton oxidation of ethanol into acetaldehyde, or quenching by sulfur dioxide. Acetaldehyde production from added H2O2 was faster at pH 4 than at pH 3, while the efficacy of SO2 as an antioxidant was diminished, lending credence to the notion that high-pH wines deteriorate more quickly than more acidic wines. These observations may be explained by the pH-dependent complexation of iron by tartrate and other carboxylic acids in wine, which determines the reduction potential of iron and controls its reactivity. Findings overall suggest viticultural and winemaking practices, as they pertain to the management of wine acidity, may have significant long-term repercussions on aging.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Nguyen Thi1

1Weincampus Neustadt, Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR), Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

wine ageing, oxidation, iron, acidity, Fenton

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Use of sensors/biosensors for detection of food safety parameters in wine

The implementation of food safety assurance systems in wineries involves ensuring that the wines produced do not pose a risk to consumer health and are therefore free from harmful substances, such as those that may be incorporated during the production process (pesticides, additives, etc.), allergens or mycotoxins.

Survey assessing different practices for mechanical winter pruning in Southern France vineyards

Winter pruning is today the longest operation for hand workers in the vineyard. Over the last years, mechanical pruning practices have become popular in southern France vineyards to respond to competitiveness issue especially for the basic and mid-range wine production. Wine farmers have developed different vineyard management techniques associated with mechanical winter pruning. They sought to be precise or not to control the buds number per vine.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

New tool to evaluate color modifications during oxygen consumption in white and red wines

Measuring the effect of oxygen consumption on the color of wines as the level of dissolved oxygen decreases over time is very useful to know how much oxygen a wine can consume without significantly altering its color. The changes produced in wine after being exposed to high oxygen concentrations have been studied by different authors, but in all cases the wine has been analyzed once the oxygen consumption process has been completed. This work presents the results obtained with the use of an equipment designed and made to measure simultaneously the level of dissolved oxygen and the spectrum of the wine, during the oxygen consumption process from saturation levels with air to very low levels, which indicate the total consumption of the dosed oxygen[1,2].

Experiments with the use of stems in Pinot noir winemaking

Vinification trials were carried out between 2018 and 2021 in the experimental winery at Laimburg Research Centre, Alto Adige, to test the effect of grape stem inclusion during fermentation of Pinot Noir.