IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Abstract

Acidity is often touted as a predictor of wine ageability, though surprisingly few studies have systematically investigated the chemical basis for this claim. The effects of pH on the rates of several key reactions in the wine oxidation pathway were evaluated in model wine. Wine oxidation starts with the redox cycling of iron between two oxidation states: iron(II) is oxidized by oxygen while iron(III) is reduced by phenols. While iron(III) reduction slowed as pH was increased from 3 to 4, oxygen consumption by iron(II) accelerated. However, pseudo-first order rate constants for oxygen consumption remained at least ten times lower than those of iron(III) reduction, suggesting that iron(II) oxidation is the rate-determining reaction for wine oxidation, and wine aging is thus limited by oxygen ingress. Despite this, different wines subject to the same oxidative conditions will often vary in their rate of maturation, indicating another control point “downstream” in the oxidation pathway. Hydrogen peroxide formed upon the reduction of oxygen can react in one of two ways: the iron-catalyzed Fenton oxidation of ethanol into acetaldehyde, or quenching by sulfur dioxide. Acetaldehyde production from added H2O2 was faster at pH 4 than at pH 3, while the efficacy of SO2 as an antioxidant was diminished, lending credence to the notion that high-pH wines deteriorate more quickly than more acidic wines. These observations may be explained by the pH-dependent complexation of iron by tartrate and other carboxylic acids in wine, which determines the reduction potential of iron and controls its reactivity. Findings overall suggest viticultural and winemaking practices, as they pertain to the management of wine acidity, may have significant long-term repercussions on aging.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Nguyen Thi1

1Weincampus Neustadt, Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR), Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

wine ageing, oxidation, iron, acidity, Fenton

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

An Ag+ SPE method combined with Deans’ switch heart-cutting MDGC–MS/Olfactometry approach for identifying unknown volatile thiols in wine

Wine aroma is a crucial quality criterion. A multitude of volatile compounds have been identified and correlated to the aroma attributes perceived in wine.

Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Over the last years, the potential use of non-Saccharomyces yeasts to modulate the production of target metabolites of oenological interest has been well recognized. Among non-Saccharomyces yeasts, Starmerella bacillaris (synonym Candida zemplinina) is considered one of the most promising species to satisfy modern market and consumers preferences due to its peculiar characteristic (enhance glycerol and total acidity contents and reduce ethanol production). Mixed fermentations using Starm. bacillaris and Saccharomyces cerevisiae starter cultures represent a way to modulate metabolites of enological interest, taking advantage of the phenotypic specificities of the former and the ability of the latter to complete the alcoholic fermentation. However, the consumption of nutrients by these species and their produced metabolites may inhibit or stimulate the growth (and malolactic activity) of lactic acid bacteria (LAB).