IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

Abstract

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030. The selection process, and particularly quality evaluation of the wines produced, are a bottleneck slowing down the breeding of new pathogen resistant grapevine varieties. Our major aim is therefore the development of predictive models for wine quality traits. Their implementation in the selection process would considerably increase the efficacy of grapevine breeding.The centrepiece of our study is a segregating white wine F1-population of ‘Calardis Musqué’ and ‘Villard Blanc’ consisting of 150 genotypes with 13 plants per genotype at two locations. A ‘Genotyping by Sequencing’ approach with a novel bioinformatics pipeline delivered a high-density genetic map of the breeding population. Experimental winemaking in a 4-liter scale (micro-vinification) provided authentic wines for comprehensive sensory evaluation and chemical analysis of major and minor metabolites including aroma compounds such as monoterpenoids. Moreover, five annual repetitions at two locations allow robust modelling and an estimation of environmental impact on the phenotypic data. Genetic, metabolic, and sensory data for multiple vintages combine into a comprehensive data base for predictive modelling. The descriptive and quality score card was adapted to the large number of wine samples and the unusual broad range of wine qualities resulting from an unselected set of grapevine genotypes. Based on evaluation of all 150 genotypes we differentiated a set of best and worst wines reproducibly over years. Environmental-related differences among vintages were still present. Intensity of the descriptive attribute “floral” played a crucial role for total quality within this population and correlates with linalool and cis-rose oxide concentration of the wines in all vintages measured by SIDA-SPE-GC-MS. In addition, total concentrations of linalool enabled the discovery of several genomic regions (quantitative trait loci, QTLs) that collocate with putative genes associated with terpene biosynthesis. Multi seasonal data allowed refinement and validation of models predicting these wine quality traits. Further exploitation of the large data set will provide more insights into genomic regions related to other wine quality traits and will allow an early selection of genotypes of promising genetic quality potential or sorting out of poor candidates during grape vine breeding.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Siebert, Annemarie1, Vestner Jochen1, Röckel Franco2, Schwander Florian2, Frenzke Lena3, Wenke Torsten4, Wanke Stefan3, Töpfer Reinhard2 and Fischer Ulrich1

1Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology
2Julius Kühn-Institute (JKI), Institute for Grapevine Breeding, Geilweilerhof
4ASGEN GmbH & Co. KG

Contact the author

Keywords

Wine quality, metabolic quality potential, monoterpenes, genetic quality potential, quantitative trait loci

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Typicité et terroir : importance relative du type de sol et du niveau de maturité dans la typologie sensorielle du vin

Le lien fonctionnel entre typicité et terroir a été étudié en prenant en compte deux dimensions importantes : le type de sol et la date de vendanges. Ces deux facteurs sont, à des degrés divers

Phenolic characterization of four different red varieties with “Caíño” denomination cultivated in Northwestern Spain

In this work, these four red varieties were characterized in terms of phenolic composition. Thus, the anthocyanin accumulation and the extractability evolution during ripening were compared.

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.

Differential gene expression and novel gene models in 110 Richter uncovered through RNA Sequencing of roots under stress

The appearance of the Phylloxera pest in the 19th century in Europe caused dramatical damages in grapevine diversity. To mitigate these losses, grapevine growers resorted to using crosses of different Vitis species, such as 110 Richter (110R) (V. berlandieri x V. rupestris), which has been invaluable for studying adaptations to stress responses in vineyards. Recently, a high quality chromosome scale assembly of 110R was released, but the available gene models were predicted without using as evidence transcriptional sequences obtained from roots, that are crucial organs in rootstock, and they may express certain genes exclusively. Therefore, we employed RNA sequencing reads of 110R roots under different stress conditions to predict new gene models in each haplotype of 110R under different stresses.

Integrated multiblock data analysis for improved understanding of grape maturity and vineyard site contributions to wine composition and sensory domains

Much research has sought to define the complex contribution of terroir (varieties x site x cultural practices) on wine composition. This investigation applied recent advances in chemometrics to determine relative contributions of vine growth, berry maturity and site mesoclimate to wine composition and sensory profiles of Shiraz and Cabernet Sauvignon for two vintages.