IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Olfactometry approach to assess odorant compounds of grape spirits used for Port wine production-first results

Olfactometry approach to assess odorant compounds of grape spirits used for Port wine production-first results

Abstract

The production of Port Wine requires the addition of grape spirit to stop the fermentation, ensuring the desired sweetness. The grape spirit, a product of wine and wine by-products distillation, must comply several legal requirements, namely the sensory evaluation before its addition to the wine. Given that previous studies1 pointed out the contribution of grape spirit to the volatile composition of Port wines, the main purpose of this study was the assessment of the odorant compounds of several grape spirits used for Port wine production. The volatiles of grape spirits samples were previously extracted by liquid-liquid extraction and after concentrated. The extracts of volatile compounds were analysed by gas chromatography–olfactometry (GCO) to evaluate the most important aroma compounds and by gas chromatography−mass spectrometry (GC-MS) for compound identification. The GCO analysis was performed using the frequency detection method2, where a group of assessors sniffed the extracts. The individual aromagrams are summed and the odour’s intensity is estimated through the number of sniffers who detect an odour.
The GCO results of the grape spirits analysed, pointed out to the presence of several odorant compounds from different chemical families, namely esters, alcohols, terpenic and acids. Some of these volatile compounds are assigned with pleasant odour notes such as fruity, caramel, honey and floral while other are assigned with unpleasant and heavy odour notes such as cheese and foot odour. The majority of the identified compounds were originated from the fermentation process and were also found in other unaged distillate beverages such as freshly Cognac and Calvados3 or Tequila4.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Caldeira Ilda1, Lourenço Sílvia1, Furtado Isabel2, Silva Ricardo2 and Rogerson Frank S. S.2

1Instituto Nacional de Investigação Agrária e Veterinária, Polo de Dois Portos, and MED—Mediterranean Institute for Agriculture, Environment and Development
2Symington Family Estates 

Contact the author

Keywords

grape spirit, odorants, olfactometry, detection frequency

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS

Effect of the shade generated by simulated solar panels in two row orientation on the physiology and productivity of Vitis vinifera L. cv. Malbec

Context and purpose of the study. In regions where grapevines are grown under irrigation, like most regions in Argentina, the wine industry should adopt more sustainable strategies and production systems towards a higher water use efficiency and a reduction in no-renewable energy consumption.

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA).

Vitiforestry as innovative heritage. Adaptive conservation of historical wine-growing landscapes as response to XXI century’s challenges.

Traditional agricultural and agro-pastoral systems (prior to industrial revolution) often have the characteristic of being multiple systems, in which multiple crops are hosted simultaneously on the same plot. currently research suggests to study more in depth the potential of multiple agricultural systems in order to detect those characteristics of multiple agrarian systems that could allow modern viticulture to adapt to the challenges posed by climate change: rising temperatures with impacts on the phenological cycle of the vine, resurgence of plant deseases, extreme soil washout phenomena and hail storms, among others.

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.