IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Olfactometry approach to assess odorant compounds of grape spirits used for Port wine production-first results

Olfactometry approach to assess odorant compounds of grape spirits used for Port wine production-first results

Abstract

The production of Port Wine requires the addition of grape spirit to stop the fermentation, ensuring the desired sweetness. The grape spirit, a product of wine and wine by-products distillation, must comply several legal requirements, namely the sensory evaluation before its addition to the wine. Given that previous studies1 pointed out the contribution of grape spirit to the volatile composition of Port wines, the main purpose of this study was the assessment of the odorant compounds of several grape spirits used for Port wine production. The volatiles of grape spirits samples were previously extracted by liquid-liquid extraction and after concentrated. The extracts of volatile compounds were analysed by gas chromatography–olfactometry (GCO) to evaluate the most important aroma compounds and by gas chromatography−mass spectrometry (GC-MS) for compound identification. The GCO analysis was performed using the frequency detection method2, where a group of assessors sniffed the extracts. The individual aromagrams are summed and the odour’s intensity is estimated through the number of sniffers who detect an odour.
The GCO results of the grape spirits analysed, pointed out to the presence of several odorant compounds from different chemical families, namely esters, alcohols, terpenic and acids. Some of these volatile compounds are assigned with pleasant odour notes such as fruity, caramel, honey and floral while other are assigned with unpleasant and heavy odour notes such as cheese and foot odour. The majority of the identified compounds were originated from the fermentation process and were also found in other unaged distillate beverages such as freshly Cognac and Calvados3 or Tequila4.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Caldeira Ilda1, Lourenço Sílvia1, Furtado Isabel2, Silva Ricardo2 and Rogerson Frank S. S.2

1Instituto Nacional de Investigação Agrária e Veterinária, Polo de Dois Portos, and MED—Mediterranean Institute for Agriculture, Environment and Development
2Symington Family Estates 

Contact the author

Keywords

grape spirit, odorants, olfactometry, detection frequency

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The relationship between wind exposure and viticultural performance of Vitis vinifera L. cv. Merlot in a coastal vineyard (South Africa)

The South Western Cape of South Africa is exposed to strong southerly and south easterly synoptic winds during the growth period of the grapevine. The development of sea breezes in the afternoon is also a phenomenon associated with the ripening period of grapes cultivated in this coastal area. Wind is one of the environmental variables having the greatest spatial variation but the implications of regular exposure to wind for the performance of the grapevine has not yet been determined for vineyards in the South Western Cape. This study was initiated to meet this need.
The study was conducted in a hedge-trellised vineyard of Vitis vinifera L. cv Merlot with north east – south west row direction. Thirty experimental sites, each consisting of 14 vines, were identified as being exposed to wind or sheltered based on hand-held anemometer readings during the 2001/2002 season. Four stationary anemometers were strategically positioned between the thirty sites. Stomatal conductance and leaf temperature were measured with a PP systems porometer. Vegetative and yield measurements were performed during the 2002/2003 season. The t-test of equal variance was used to determine significant differences in measured parameters between exposed and sheltered grapevines.
Stomatal conductance and leaf area were significantly reduced by exposure to wind. This was associated with a significant reduction in the leaf area of primary shoots, related to shorter shoots, but a significant augmentation of secondary shoot leaf number and area. The number of bunches per vine and yield were also reduced for exposed vines. The berry potassium content was significantly increased for exposed grapevines.
This demonstrates that exposure to wind can result in significant within-vineyard, and potentially between-vineyard, variability in grapevine physiology, vegetative growth, yield and berry composition, with implications for wine style and quality.

The kinetics of grape aromatic precursors hydrolysis at three different temperatures

In neutral grapes, it is known that most aroma compounds are present as non-volatile
precursors.

Study of grape physiology and wine quality (cv. Merlot) in different identified terroirs of the canton Ticino (Switzerland)

Une étude de la physiologie de la vigne (cv. Merlot) et de la qualité des vins a été réalisée au Tessin de 2006 à 2008. La méthodologie utilisée pour cette étude intégrait tous les paramètres qui définissent les terroirs: facteurs naturels (géologie, pédologie et climat), facteurs physiologiques de la vigne et qualité des vins qui sont les révélateurs de la valeur d’un terroir.

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.