IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Olfactometry approach to assess odorant compounds of grape spirits used for Port wine production-first results

Olfactometry approach to assess odorant compounds of grape spirits used for Port wine production-first results

Abstract

The production of Port Wine requires the addition of grape spirit to stop the fermentation, ensuring the desired sweetness. The grape spirit, a product of wine and wine by-products distillation, must comply several legal requirements, namely the sensory evaluation before its addition to the wine. Given that previous studies1 pointed out the contribution of grape spirit to the volatile composition of Port wines, the main purpose of this study was the assessment of the odorant compounds of several grape spirits used for Port wine production. The volatiles of grape spirits samples were previously extracted by liquid-liquid extraction and after concentrated. The extracts of volatile compounds were analysed by gas chromatography–olfactometry (GCO) to evaluate the most important aroma compounds and by gas chromatography−mass spectrometry (GC-MS) for compound identification. The GCO analysis was performed using the frequency detection method2, where a group of assessors sniffed the extracts. The individual aromagrams are summed and the odour’s intensity is estimated through the number of sniffers who detect an odour.
The GCO results of the grape spirits analysed, pointed out to the presence of several odorant compounds from different chemical families, namely esters, alcohols, terpenic and acids. Some of these volatile compounds are assigned with pleasant odour notes such as fruity, caramel, honey and floral while other are assigned with unpleasant and heavy odour notes such as cheese and foot odour. The majority of the identified compounds were originated from the fermentation process and were also found in other unaged distillate beverages such as freshly Cognac and Calvados3 or Tequila4.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Caldeira Ilda1, Lourenço Sílvia1, Furtado Isabel2, Silva Ricardo2 and Rogerson Frank S. S.2

1Instituto Nacional de Investigação Agrária e Veterinária, Polo de Dois Portos, and MED—Mediterranean Institute for Agriculture, Environment and Development
2Symington Family Estates 

Contact the author

Keywords

grape spirit, odorants, olfactometry, detection frequency

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Environmental influence on grape phenolic and aromatic compounds in a Nebbiolo selection (Vitis vinifera L.)

Nebbiolo (Vitis vinifera L.) is one of the most important wine red cultivar of North-west Italy. A better understanding of the complex relations among grape aromatic and phenolic maturity and environmental factors may strongly contribute to the improvement of the quality of Nebbiolo wines.

Predicting consumers’ organic wine consumption behaviour

Organic wine production and consumption is one of the sustainable practices contributing to a number of sustainable development goals (SDGs).

Effect of vine nitrogen status on grape and wine quality: Terroir study in the Vaud vineyard (Switzerland)

This study was conducted on soil-climate-plant relations (terroir) and their impact on grape composition and wine quality in the canton of Vaud by Agroscope Changins-Wädenswil ACW

Postveraison shoot trimming in Tannat and Merlot: preliminary results on yield components, plant balance and berry composition

There is currently a trend towards the production of wines with low alcohol content. To achieve this, grapes with low sugar content must be used. There are techniques at the vineyard level that can delay ripening and avoid excessive sugar accumulation without, a priori, affecting the final polyphenol content. Postveraison shoot trimming (PVST) is experimentally evaluated for these purposes, but its impact under Uruguayan climatic conditions with high interannual variability is not known. The aim of this work is to assess the PVST in Tannat and Merlot cultivars and their impact on yield components, plant balance and berry primary composition. In this study, two commercial vineyards of 10 years old Tannat and Merlot (grafted on SO4) at Canelones Department were selected. During the 2020-201 growing season, grapevines were submitted to PVST when grapes reached 15º Brix. In a randomized block, trimmed (T) and control (C) plants were evaluated with three repetitions each cultivar. Evaluation of the evolution of primary berry composition during ripening, measurement of yield components and plant balance were performed. For both cultivars, PVST did not affect yield components. Merlot reached 5.4 kg per plant and Tannat 7.1 kg, with not statistical significance between treatments. However, statistical differences were observed in terms of plant balance. In Merlot Ravaz Index reached a difference of 5.3 (12.0 in T and 6.7 in C) meanwhile Tannat reached 3.5 of statistical difference (13.7 in T and 10.2 in C). The tendency to imbalance for the treated plants had an impact on the final grape composition. Merlot grapes showed statistical difference in final total acidity (0.3 g of difference between treatments) while treatments impact final sugar content on Tannat grapes (10.0 g of difference between treatments). Further studies are needed to assess the impact of different canopy management techniques in our conditions.