IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of successive oxygen saturations of a grape juice, supplemented or not with laccase, on its color and hydroxycinnamic acids concentration

Influence of successive oxygen saturations of a grape juice, supplemented or not with laccase, on its color and hydroxycinnamic acids concentration

Abstract

Aim: This work studies how successive O2 saturations affects the color and hydroxycinnamic
acids concentration in the absence and presence of laccase from B. cinerea with the aim of better understanding the browning processes.

Materials and methods: Grapes of Muscat of Alexandria were harvested and pressed with a vertical press to extract 60% of their juice. Aliquots of 30 mL of this must were placed in 60 mL flasks equipped with a pill (PreSens Precision Sensing GmbH) for measuring oxygen by luminescence (Nomasense TM O2 Trace Oxygen Analyzer). These flasks were added or not with SO2 (50 mg/L) and with 2 UA/mL of laccase from B. cinerea (Giménez et al., 2022). All operations were carried out with a continuous nitrogen stream to protect the grape juice from air oxygen. The grape juices were then saturated in O2. The flasks were kept at 20±2 °C and O2 was monitored (Diéval et al., 2011). Once O2 was completely consumed, this operation was repeated twice to reach a total of three O2 saturations. Absorbances at 420, 320 and 280 nm were determined in all the samples. Hydroxycinnamic acids and GRP were analyzed by RP-HPLC-DAD-ESI-MS (Lago-Vanzela et al., 2013).

Results and discussion: Samples without SO2 and laccase consumed O2 after the 2st saturation in around 1 hour with an initial O2 consumption rate (OCR) of 0.262±0.009 mg of O2/minute. Surprisingly, no significant differences were found in the OCR of the samples supplemented with laccase in the 1st saturation (0.266±0.075). However, the OCR decreased significantly for the 2nd and 3rd saturations in the case of the samples without laccase (0.128±0.003 and 0.101±0.011 respectively) whereas no significant decrease was observed when laccase was present (0.268±0.013 and 0.238±0.049 respectively). The supplementation with SO2 almost completely inhibited OCR in both cases, without and with laccase (0.006±0.002 and 0.011±0.003 respectively). The A420 nm (yellow color) increased after each saturation and this augmentation was significant higher in the samples supplemented with laccase. In contrast, the A320 nm (hydroxycinnamic acids) and A280 nm (total phenolic compounds) do the opposite. Finally, caftaric and cutaric acids and in a minor extent fertaric acid concentrations decreased after each saturation and this decrease was very similar in the samples supplemented or not with laccase. In contrast, the samples supplemented with SO2 hardly showed changes in the different absorbances or in the hydroxycinnamic acids.

Conclusions:

These results confirm that SO2 is very effective to prevent browning even in the presence of laccase. This data also indicate that the presence of laccase provokes higher browning even consuming the same O2 than without its presence, probably because can use more substrates than natural grape tyrosinase

References

Diéval, J.B., Vidal, S., & Aagaard, O. (2011). Measurement of the oxygen transmission rate of co-extruded wine bottle closures using a luminescence-based technique. Packaging Technology and Science, 24, 375–385.
Giménez, P., Anguela, S., Just-Borras, A., Pons-Mercadé, P., Vignault, A., Canals, J.M., Teissedre, P.L., Zamora, F. (2022) Development of a synthetic model to measure browning caused by laccase activity from Botrytis cinerea. LWT – Food Science and Technology 154 (2022) 112871. 
Lago-Vanzela, E.S., Rebello, L.P.G., Ramos, A.M., Stringheta, P.C., Da-Silva, R., García-Romero, E., Gómez-Alonso, S. and Hermosín-Gutiérrez, I. (2013) Chromatic characteristics and color-related phenolic composition of Brazilian young red wines made from the hybrid grape cultivar BRS Violeta (‘BRS Rúbea’ × ‘IAC 1398-21’). Food Research International 54, 33–43.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Zamora Fernando 1, Giménez Pol1, Just-Borras Arnau1, Solé-Clua Ignasi1, Pérez-Navarro José2, Gombau Jordi1, Gómez-Alonso Sergio2 and Canals Joan Miquel1

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain
2Universidad de Castilla-La Mancha, Instituto Regional de Investigación Científica Aplicada. Ciudad Real, Spain

Contact the author

Keywords

Grape Juice, Oxidation, Browning, Laccase, Hydroxycinnamic Acids

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Variabilité spatiale du gel printanier dans le vignoble champenois : application au zonage climatique

In the Champagne vineyards, spring frosts are the cause of significant variations in the volume of the harvest which are very penalizing for the trade. This variability is reflected both in time (years without frost alternating with years with severe frosts) and in space. Certain sectors of the vineyard are in fact statistically more susceptible to frost than others, but each year no municipality can consider itself immune to this climatic accident. The objective of the study is precisely to analyze the spatial distribution of frost and to determine its main mechanisms, linked to the topography of the hillsides, their orientation but also to regional meteorological variables.

Pruned vine biomass exclusion from a clay loam vineyard soil – examining the impact on physical/chemical properties

The wine industry worldwide faces increasing challenges to achieve sustainable levels of carbon emission mitigation. This project seeks to establish the feasibility of harvesting winter pruned vineyard biomass (PVB) for potential use in carbon footprint reduction, through its use as a renewable biofuel for energy production. In order to make this recommendation, technical issues such as the potential environmental impact, chemical composition and fuel suitability, and logistical challenges of harvesting biomass needs to be understood to compare with the results from similar studies. Of particular interest is the role PVB plays as a carbon source in vineyard soils and what effect annual removal might have on soil carbon sequestration. A preliminary trial was established in the Waite Campus vineyard (University of Adelaide) to test current management strategies. Vines are grown in a Eutrophic, Red Dermosol clay loam soil with well managed midrow swards. A comparison was undertaken of mid-row treatments in two 0.25 Ha blocks (Shiraz and Semillon), including annual cultivation for seed bed preparation, the deliberate exclusion of PVB (25 years) and incorporation of PVB (13 years) at an average of 3.4 and 5.5 Mg/Ha-1 for Shiraz and Semillon respectively. In both 0-10cm and 10-30cm soil core sample depths, combined soil carbon % measures in the desired range of 1.80 to 3.50, were not significantly different between treatments or cultivars and yielded an estimated 42 Mg/ha-1 of sequestered soil carbon. Other key physical and chemical measures were likewise not significantly different between treatments. Preliminary results suggest that in a temperate zone vineyard, managed such as the one used in this study, there is no long term negative impact on soil carbon sequestration through removing PVB. This implies that growers could confidently harvest PVB for use in several end fates including as a bio fuel.

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).

Delaying grapevine budbreak and/or phenological stages

In the current climatic context, with milder winters leading to earlier budburst in most wine regions, vines are exposed to the risk of spring frosts for a longer period. Depending on the year, frost can lead to yield losses of between 20 and 100 %, jeopardizing the economic survival of wine estates. In addition, by destroying young shoots, spring frosts can impact the following season’s production, by reducing the number of canes available for pruning, for example. Late pruning is one method to combat spring frosts.

PREVALENCE OF OAK-RELATED AROMA COMPOUNDS IN PREMIUM WINES

Barrel fermentation and barrel-ageing of wine are commonly utilised practices in premium wine production. The wine aroma compounds related to barrel contact are varied and can enhance a range of wine aromas and flavours, such as ‘struck flint’, ‘caramel’, ‘red berry’, ‘toasty’ and ‘nutty’, as well as conventional oaky characters such as ‘vanilla’, ‘spice’, ‘smoky’ and ‘coconut’. A survey of commercially produced premium Shiraz, Cabernet Sauvignon, Pinot Noir and Chardonnay wines was conducted, assessing the prevalence of compounds that have been proposed as barrel-ageing markers¹ including oak lactones, volatile phenols, furanones, aldehydes, thiazoles2,3, phenylmethanethiol⁴ and 2-furylmethanethiol.⁵