Terroir 2006 banner
IVES 9 IVES Conference Series 9 Terroir and precision viticulture: are they compatible?

Terroir and precision viticulture: are they compatible?

Abstract

The concept of terroir or sense of place is almost as old as the wine industry. It is generally used as an all-encompassing term to reflect the effects of the biophysical environment in which grapes and their resultant wines are produced on the character of those wines. Historically, terroir has generally been considered at the regional or property scale. However, the recent development of Precision Viticulture promotes acquisition of a more informed sense of place by providing detailed measures of vineyard productivity, soil attributes and topography at high spatial resolution. Whilst associated research into vineyard variability lends weight to the concept of terroir in terms of biophysical impacts on grape and wine production, it also raises questions as to the scale at which terroir is a useful concept. These issues are explored using examples from the Padthaway and Sunraysia grapegrowing regions of Australia.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

R.G.V. BRAMLEY (1) and R.P. HAMILTON (2)

(1) CSIRO Sustainable Ecosystems, Food Futures Flagship and Cooperative Research Centre for Viticulture PMB n°2, Glen Osmond, SA 5064, Australia
(2) Foster’s Wine Estates, PO Box 96, Magill, SA 5072, Australia

Contact the author

Keywords

Vineyard variability, spatial scale, Australia

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Impact of the maturity and the duration of maceration on phenolic composition and sensorial quality of Divico wines

Following its approval in 2013 by Agroscope, Divico became the first interspecific grape variety in Switzerland with high resistance to downy mildew (Plasmopara viticola) and grey rot (Botrytis cinerea), and medium resistance to powdery mildew (Uncinula nectator). Extremely riche in color, Divico grapes showed great enological potential to different styles of wine. Quickly, many wine growers were interested in planting this promising variety. Many of its potential are to be explored in the coming years.

NMR profiling of grape musts from some italian regions

With wine fraud, being a widespread problem [1], the need for more sophisticated and precise analytical methods of its detection remains ever persistent.

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial
S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds.

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection

Tannin potential and molecular toasting in cooperage: a tool to modulate fruity expression of red wine

AIM: Oak wood play traditionally a huge role in making fine red wines. During wine maturation, barrel yields some of its constituents to the wine and leads to the improvement of its quality, contributing to richness and complexity [1].