IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of pre-fermentative strategies on the polysaccharide composition of must and white wines

Effect of pre-fermentative strategies on the polysaccharide composition of must and white wines

Abstract

Among the macromolecules of enological interest in white wines, much attention has been paid to polysaccharides. They have their origin in grape skin and pulp cell walls and includes polysaccharides rich in arabinose and galactose (PRAG), rhamnogalacturonans type II (RG-II) and homogalacturonans (HG); and cell walls from yeasts, constituted by mannoproteins (MP) and glucans. Polysaccharide content and composition change during fermentation and bottle aging.
Polysaccharide composition of white wines will depend, among other factors, on the pre-fermentative treatment applied to the grapes. Direct pressing or pre-fermentation maceration of crushed and destemmed grapes are usually applied. There are few studies analyzing the effect these treatments on the content of polysaccharides. Recently, the International Organization of Vine and Wine has approved the use of sonication of crushed grapes to promote the extraction of their compounds. However, there are no studies on the effect of sonication on crushed and white grapes on the content of polysaccharides in the musts and during the aging in bottle.
The aim of this study was to study the effect of direct pressing of white grapes, prefermentative maceration and prefermentative sonication of crushed and destemmed grapes on the polysaccharide composition in musts from Vitis vinifera L. cv. Airén. It was also studied the effect during the bottle aging.
Airén white grapes were destemmed and crushed. One batch was directly pressed into a pneumatic press; other was pressed after 4 hours of-fermentative maceration; and other was treated with power ultrasound at 30 kHz before pressing. Samples were taken of the raked musts, when bottling and after 6 months of bottle aging. Glycosyl residue composition was analyzed as previously described (Guadalupe et al., 2012; Ayestarán et al., 2004).
All the musts showed contents of glucosyl monosaccharides significantly higher than pectic monosaccharides. Sonication treatment improved the release of RG-II and mannans in musts and the pre-fermentative maceration favored the extraction of PRAG. Musts from direct pressing had the lowest content of total monosaccharides and RG-II. From the must to the time of bottling, there was an increase in the content of RG-II and MP and a decrease of PRAG in all wines evaluated. At the time of bottling, wines from sonicated grapes showed the highest content of pectic monosaccharides and RG-II, while wines from pre-fermentative maceration showed the highest content of glucosyl monosaccharides. After 6 months of bottle aging, all wines showed a decrease in the content of MP and PRAG. Wines made with pre-fermentative maceration showed the highest content of total polysaccharides families, PRAG and MP.
This research was funded by the Ministerio de Ciencia, Innovación y Universidades and Feder Funds, grant number RTI2018-093869-B-C21.

References

Ayestarán, B.; Guadalupe, Z.; León, D. Quantification of major grape polysaccharides (Tempranillo v.) released by maceration enzymes during the fermentation process. Anal. Chim. Acta. 2004, 513, 29–39.
Guadalupe, Z.; Martínez-Pinilla, O.; Garrido, A.; Carrillo, J. D.; Ayestarán, B. Quantitative determination of wine polysaccharides by gas chromatography–mass spectrometry (GC–MS) and size exclusion chromatography (SEC). Food Chem. 2012, 131, 367–374.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Canalejo Diego1, Zhao Feng1, Martínez-Lapuente Leticia1, Guadalupe Zenaida1, Ayestarán Belén1, Pérez-Porras Paula2, Bautista-Ortín Ana Belén2 and Gómez-Plaza Encarna2

1Institute of Vine and Wine Sciences, ICVV (University of La Rioja, Government of La Rioja and CSIC)
2Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia

Contact the author

Keywords

White wine; Monosaccharides; High-power ultrasounds; Direct pressing; Pre-fermentation maceration

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Characterization of Cabernet Sauvignon from Maipo valley (Chile) using fluorescence measurement

Viral diseases are a significant cause of both decreased grape quality and vineyard production. Important agents include grapevine leafroll-associated virus (glravs) and grapevine rupestris stem pitting-associated virus (grspav). However, conducting phytosanitary analysis of vineyards for viruses on-site is challenging, and molecular testing is generally expensive.

Influence of protective colloids on tartrate stability, polysaccharide contents and volatile compound profile of a white wine

The tartaric salts precipitation is one of the main issues regarding wine instability 1. In addition to the well-known and deeply studied phenomena of potassium hydrogentartrate precipitation (KHT), the last decade has been increased the phenomena of calcium tartrate (CaT) precipitation, that is a concern for the wine industry 2.

Sensory study of potential kokumi compounds in wine 

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the kokumi sensory concept (Yamamoto & Inui-Yamamoto 2023).

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.