IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

Abstract

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.
Due to their great techno-functional value, some major protein components of grape seed endosperm have been identified and its potential use for color protection purposes have been already tested in wines at experimental scale. Notwithstanding, the capability of proteins to modulate sensory properties is highly dependent on their structural features, their ability to form specific 3D conformations, and the interaction with other molecules present in food matrices such as anthocyanin pigments in wines. Recently, we have confirmed by means of theoretical studies that grape seed  globulins can stablish different types of interactions (hydrogen bonding, alkyl and π-π) with the main grape anthocyanin (malvidin 3-gl).To date, however, such as interactions has been scarcely studied. Although a basic molecular interaction mechanism similar to copigmentation has been suggested, many questions still remain unclarified. In this sense, a deeper molecular understanding of the grape seed protein-anthocyanin interactions is needed to better define their potential uses and technological applications.
Thus, the main objective of this work was to explore new molecular binding mechanisms between grape seed polypeptides and wine anthocyanins in model wine solutions through fluorescence spectroscopy and computational techniques. For this purpose, fluorescence extinction spectroscopy was used to experimentally confirm the possible interaction mechanisms, the affinity constants, the stoichiometry of the complexes and other thermodynamic parameters. In addition, molecular modelling techniques, such as docking studies, were used to model the  most energetically favorable binding sites of wine anthocyanins on the grape seed polypeptide. Results will provide insights and substantial information about protection to colors expressed by anthocyanins in red wine.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Chamizo-González Francisco1, Gordillo Arrobas Belén1, Hereida Francisco J.1, Días Ricardo2 and Freitas Víctor2

1Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
2Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto  

Contact the author

Keywords

wine anthocyanin, grape seed polypeptides, molecular interaction, Quenching of fluorescence, computational techniques

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones.

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

Soil management with respect to nitrogen mobilization and nutrient supply of grapevines on loess soil

The effects of different methods of soil management on the nutrient supply and the wine quality of organically grown Grüner Veltliner grapevines (wide-spaced high culture training system) were investigated in the winegrowing region Wagram of Lower Austria (municipality: Großriedenthal).

Second pruning as a strategy to delay maturation in cv. ‘Touriga nacional’ in the Portuguese Douro region

The advance in maturation of wine grapes is an important climate change risk related effect that could affect warm regions like Portuguese Douro Wine Region. Indeed, the climate analysis over the past years registered a decrease in the precipitation, significant higher average temperatures, and a more frequent occurrence of extreme weather events, including heat waves. In these conditions the length from anthesis until maturation is shortened and the uncoupling of technical and phenolic maturity results in berries with higher sugar concentration (and lower acidity), but lower anthocyanins, tannins, and total phenolic concentration, which produce unbalanced wines.
In this work, an innovative strategy of crop forcing, based on forcing vine regrowth after a second pruning of green shoots, was tested, aimed at delaying ripening until the temperature becomes lower and, therefore, preventing acidity loss and increasing anthocyanin-to-sugar ratio. The experiments were conducted in 2019 and 2020 in a commercial vineyard of ‘Touriga Nacional’ located in the Douro Region. Crop forcing was conducted 15 (CF1) to 30 (CF2) days after fruit set. Vines pruned with conventional methods were used as control (CF0). Results confirmed that fruit ripening was shifted from the hot season (August/September), until a cooler period (October through early-November). At harvest, grapevine berries from CF1 and CF2 presented lower pH and higher acidity, than control, with no significant differences in colour intensity and phenolic levels composition. Sugar content was lower in CF2-treated vines in both seasons. However, in CF-treated vines the number and size of clusters were significantly lower (up to 88% reduction) than in control plants. A metabolomics analysis of mature berries from CF-treated vines and control is underway. Crop forcing was indeed effective in producing a more balance berry composition but severely reduced grapevine yield,