IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

Abstract

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.
Due to their great techno-functional value, some major protein components of grape seed endosperm have been identified and its potential use for color protection purposes have been already tested in wines at experimental scale. Notwithstanding, the capability of proteins to modulate sensory properties is highly dependent on their structural features, their ability to form specific 3D conformations, and the interaction with other molecules present in food matrices such as anthocyanin pigments in wines. Recently, we have confirmed by means of theoretical studies that grape seed  globulins can stablish different types of interactions (hydrogen bonding, alkyl and π-π) with the main grape anthocyanin (malvidin 3-gl).To date, however, such as interactions has been scarcely studied. Although a basic molecular interaction mechanism similar to copigmentation has been suggested, many questions still remain unclarified. In this sense, a deeper molecular understanding of the grape seed protein-anthocyanin interactions is needed to better define their potential uses and technological applications.
Thus, the main objective of this work was to explore new molecular binding mechanisms between grape seed polypeptides and wine anthocyanins in model wine solutions through fluorescence spectroscopy and computational techniques. For this purpose, fluorescence extinction spectroscopy was used to experimentally confirm the possible interaction mechanisms, the affinity constants, the stoichiometry of the complexes and other thermodynamic parameters. In addition, molecular modelling techniques, such as docking studies, were used to model the  most energetically favorable binding sites of wine anthocyanins on the grape seed polypeptide. Results will provide insights and substantial information about protection to colors expressed by anthocyanins in red wine.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Chamizo-González Francisco1, Gordillo Arrobas Belén1, Hereida Francisco J.1, Días Ricardo2 and Freitas Víctor2

1Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012, Sevilla, Spain
2Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto  

Contact the author

Keywords

wine anthocyanin, grape seed polypeptides, molecular interaction, Quenching of fluorescence, computational techniques

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of alcoholic strength on the phenolic and furfural compounds of Brandy de Jerez aged in Sherry Casks®

Brandy is a spirit drink produced from wine spirit aged for at least six months in oak casks with a capacity of less than 1000 L and minimum alcohol by volume (ABV) of 36%. During the aging process, physicochemical and sensory changes take place. Manifested by colour, flavour or aroma variations that improve the quality of the initial distillate.

Counting grape bunches using deep learning under different fruit and leaf occlusion conditions

Yield estimation is very important for the wine industry since provides useful information for vineyard and winery management. The early yield estimation of the grapevine provides information to winegrowers in making management decisions to achieve a better quantity and quality of grapes. In general, yield forecasts are based on destructive sampling of bunches and manual counting of berries per bunch and bunches per vine.

Disentangling the sources of variation in stomatal regulation in field-grown cultivar-rootstock combinations

The inherent variability of Nature poses challenges for researchers to draw clear conclusions from field experiments. Identifying and assessing adaptations to climate change requires agronomic field trials.

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).