IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Abstract

Estimation of the resistance of a wine against oxidation is of great importance for the wine. To that purpose, most of the commonly used chemical assays that are dedicated to estimate the antioxidant (or antiradical) capacity of a wine consist in measuring the capacity of the wine to reduce an oxidative compound or a stable radical. In the must/wine matrix, polyphenols are major compounds likely to react with oxidant or radical, but such reaction generate quinones that then are involved in varietal aroma loss via nucleophilic addition reaction. It raises the paradox that a good antioxidant capacity does not imply a good protection of such sensitive compounds as aromatic compounds which are wine key quality markers.

The authors have developed a methodology focusing on the survival time of a sensitive compound to estimate the oxidative sensitivity of a solution. A labeled nucleophile is monitored by UHPLC-ESI-Q-ToF MS periodically for hours (from 0.5h to 72h) after a chemical initiation of oxidation in wine model solution containing 4-methylcatechol. 7 Cystein containing peptides (alone or in combination) are used to artificially increase the nucleophilic environment (and thus the competition for quinone nucleophilic addition) and estimate the half-life of the labeled nucleophile. In addition, soluble fraction released by different inactivated yeasts are also used as complex source of nucleophiles.

Half-life of the labeled compound is the final expression of several complex mechanisms such as nucleophilic competition, but also oxygen consumption, or catechol reduction.
Independently of the mechanisms, we can observe that increasing the nucleophilic environment improve the half life of the labeled nucleophile. It is notably visible for the specific optimized inactivated yeast which released many cysteine-containing peptides.
Finally, this method relies on the fate of one sensitive nucleophile to estimate the sensitiveness of the whole matrix to oxidation. It estimates the half-life of this compound which allows to compare oxidative sensitivity of different matrices under specific oxidation conditions.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Bahut Florian1, Sieczkowski Nathalie1, Nikolantonaki Maria1 and Gougeon Régis D.1

1Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Lallemand SAS, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France

Contact the author

Keywords

Nucleophile, oxidation, wine, peptide, diversity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Schiava cv. (germ. Vernatsch) is a group of grape varieties used for winemaking (e.g. Kleinvernatsch-Schiava gentile, Grauvernatsch-Schiava grigia, Edelvernatsch-Schiava grossa) historically reported in Northern Italy, Austria, Germany and Croatia. Beside common phenotypic traits, these varieties have been also hypothesized to share a common geographical origin in Slavonia (Eastern Croatia). Nowadays, Schiava cv. are considered historical grape varieties of northern regions of Italy such as Lombardy, Trentino and South Tyrol. Traditionally widely consumed locally and also exported, over the past decades there has been a steady drop in production of these grapes, although with a parallel increase in wine quality. In this report, the effects of three main enological variables on the chemical components of Schiava produced in South Tyrol (var. Schiava grossa) are investigated from grape to bottle.

A generic method to analyze vine water deficit continuously

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

AIM: Glutathione (GSH) is a non-protein thiol naturally present in grape berries and produced by yeasts during fermentation. It has a strong antioxidant activity, thus can be added during winemaking to limit the oxidative phenomena of wine, preserving sensory characteristics and stability, ultimately promoting a healthier product by reducing the need for SO2 addition.