IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Abstract

Estimation of the resistance of a wine against oxidation is of great importance for the wine. To that purpose, most of the commonly used chemical assays that are dedicated to estimate the antioxidant (or antiradical) capacity of a wine consist in measuring the capacity of the wine to reduce an oxidative compound or a stable radical. In the must/wine matrix, polyphenols are major compounds likely to react with oxidant or radical, but such reaction generate quinones that then are involved in varietal aroma loss via nucleophilic addition reaction. It raises the paradox that a good antioxidant capacity does not imply a good protection of such sensitive compounds as aromatic compounds which are wine key quality markers.

The authors have developed a methodology focusing on the survival time of a sensitive compound to estimate the oxidative sensitivity of a solution. A labeled nucleophile is monitored by UHPLC-ESI-Q-ToF MS periodically for hours (from 0.5h to 72h) after a chemical initiation of oxidation in wine model solution containing 4-methylcatechol. 7 Cystein containing peptides (alone or in combination) are used to artificially increase the nucleophilic environment (and thus the competition for quinone nucleophilic addition) and estimate the half-life of the labeled nucleophile. In addition, soluble fraction released by different inactivated yeasts are also used as complex source of nucleophiles.

Half-life of the labeled compound is the final expression of several complex mechanisms such as nucleophilic competition, but also oxygen consumption, or catechol reduction.
Independently of the mechanisms, we can observe that increasing the nucleophilic environment improve the half life of the labeled nucleophile. It is notably visible for the specific optimized inactivated yeast which released many cysteine-containing peptides.
Finally, this method relies on the fate of one sensitive nucleophile to estimate the sensitiveness of the whole matrix to oxidation. It estimates the half-life of this compound which allows to compare oxidative sensitivity of different matrices under specific oxidation conditions.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Bahut Florian1, Sieczkowski Nathalie1, Nikolantonaki Maria1 and Gougeon Régis D.1

1Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Lallemand SAS, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France

Contact the author

Keywords

Nucleophile, oxidation, wine, peptide, diversity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Valorization of grape marc in a biorefinery loop for producing short- and medium-chain fatty acids, hydrogen, and methane, with polyphenol recovery

Global grape production amounts to approximately 70 million tons per year, with Europe contributing 61% of the world’s wine output, primarily from Italy, France, and Spain.

Evolution of astringency during the ripening of red grapes through the tribological astringency index

The phenolic composition of red grapes is one of the most important quality parameters.

EFFECTIVENESS OF APPLIED MATERIALS IN REDUCING THE ABSORPTION OF SMOKE MARKER COMPOUNDS IN A SIMULATED WILDFIRE SCENARIO

Smoke taint (ST) is a grape-wine off-flavour that may occur when grapes absorb volatile phenols (VPs) originating from wildfire smoke (1). ST is associated with the negative sensory attributes such as smoky and ashy notes. VPs are glycosylated in the plant and thus present in both free and bound forms (2; 3). Wildfire smoke has resulted in a decline in grape and wine quality and financial losses which has become a prominent issue for the global wine industry.

Impact of canopy management on thiol precursors in white grapes: a six-year field study

The mechanisms behind thiol precursor accumulation in grapes remain incompletely understood, nor are the ways in which they can be improved by agronomic practices. A six-year field trial studied the physiological response of the Swiss white cultivar Vitis vinifera Arvine, rich in varietal thiols and precursors, to canopy management, i.e. leaf removal and canopy height.. Five treatments were set up in a randomized block design to assess the impacts of 1) pre-flowering LR (i.e. pre-flowering or full-flowering stages) and 2) compensating for the leaf area removed in the cluster zone by increasing the trimming height (i.e. 100 or 150 cm canopy height), compared with a non-defoliated control treatment.
Intensive pre-flowering LR severely reduced yield potential (–47% on average) and reduced the concentration of 3-mercaptohexanol precursors (P-3MH) in the must (–21%; p-value < 0.10).

Long-term vineyard sustainability index

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment.