IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Cork and Wine: interactions and newly formed compounds

Cork and Wine: interactions and newly formed compounds

Abstract

When the cork is in direct contact with an alcoholic solution such as in case of a bottle wine, some cork components can migrate into the wine. Volatile and non-volatile compounds soluble in ethanol/water such as carbohydrates, alcohols, ketones, phenolic compounds including tannins that were already proved to pass from cork to wine, are of oenological importance due to their contribution to sensory properties (color, flavor, astringency and bitterness). There is an oenological interest regarding wood barrels since it has been demonstrated that they could also impact on wine organoleptic properties (aroma, color and taste) during oak ageing.Cork stoppers are believed to participate in the same interactions, as the nature of the compounds that are able to pass to wine are from the same families but depend on the contact time, the bottle position during storage and on the type of cork.This work has as main propose to study the interections between compounds extracted from cork by wine model solutions and the evaluation of the reactivity of these with two main classes of compounds present in red wines, namely flavan-3-ols ((+)-catechin) and anthocyanins (Malvidin-3-O-glucoside). With this information, the winemakers can choose varieties of cork stoppers to upgrade wine quality during storage and ageing.This work consisted on studying the reaction in wine model solution (12% ethanol, pH 3.2) of phenolic compounds like phenolic acids, aldehydes and tannins with (+)- catechin and malvidin-3-O-glucoside. From these reactions, different compounds were formed:
i) Pinotins (Pyranomalvidin3glucoside- Catechol and Pyranomalvidin3glucoside- Guaiacol);
ii) Xanthylium Salts (formed by two catechins units and vanillin);
iii) Dimer Catechin-Vanillin-Catechin;iv) Corklins (this new compound results from interaction between ellagitannins in alcoholic solutions, yielding an ethanolic derivate, and (+)-catechin;v) Acutissimin;vi) Catechin-Caffeic acid adduct. The newly found compound was detected and identified in these reactions with an ion mass in negative mode at m/z 467, with a fragmentation pattern compatible with the loss of -44 units (acid), -178 units (caffeic acid), -152 (Retro Diels Alder, characteristic of catechin).The struture of the (+)-catechin-caffeic acid adduct was determined by NMR (1H, COSY, HSQC and HMBC).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Azevedo Joana1, Oliveira Joana1, Lopes Paulo2, Mateus Nuno3 and De Freitas Victor3

1Faculty of Science the University of Porto, Rua Campo Alegre S/N, 4169-007 Porto, Portugal
2Amorim & Irmãos, Rua Corticeiros, 4536-904 S M Lamas, Portugal
3FCUP- Chemistry and Biochemistry Department of Faculty of Science University of Porto

Contact the author

Keywords

Cork, Wine, Polyphenols, Reactivity, Catechin-Caffeic acid adduct

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Vine environment interaction as a method for land viticultural evaluation. An experience in Friuli Venezia Giulia (N-E of Italy)

For a long time environment was known as one of the most important factors to characterize the quality of wines but at the same time it appears very difficult to distinguish inside the “terroir” the role of the single factor. These remarks partially explain why methods for viticultural evaluation are often quite different (Amerine et al., 1944; Antoniazzi et al., 1986; Asselin et al., 1987; Astruc et al., 1980; Bonfils, 1977; Boselli, 1991; Colugnati, 1990; Costantinescu, 1967; Costantini et al., 1987; Dutt et al., 1981; Falcetti et al., 1992; Fregoni et al., 1992; Hidalgo, 1980; Intrieri et al., 1988; Laville, 1990; Morlat et al., 1991; Scienza et al., 1990; Shubert et al., 1987; Turri et al., 1991).

Arbuscular mycorrhizal fungi as biomarkers of vineyard yield in Champagne

The vine is colonized by a multitude of micro-organisms (fungi, bacteria, oomycetes) mainly coming from the microbial reservoir constituted by the soil. These microorganisms have positive or negative effects on the vine (protection against pathogens, resistance to abiotic stress, nutrition, but also triggering of diseases) (Fournier, Pellan et al. 2022). In addition to these functional roles, they respond quickly to environmental changes (climate, cultural practices) which could make them good bioindicators of the functioning of the wine ecosystem.

Characterization of varieties named ‘Caiño’ cultivated from Northwest of Spain

The ‘Caiño’ cultivar was cultivated in Galicia (Northwestern Spain) before the invasion of grape phylloxera. Genetic diversity from this cultivar have been described and considered as originating in Galicia, ‘Caiño Tinto’, ‘Caiño Bravo’, ‘Caiño Redondo’, ‘Caiño Longo’ and ‘Caiño Blanco’.

The challenge of viticultural landscapes

Le monde vitivinicole est de plus en plus concerné par la question paysagère : l’enjeu est de taille puisqu’il s’agit de la survie de l’image positive dont bénéficient les Appellations d’Origine Contrôlée. Les paysages sont composés d’éléments qui renvoient à des références socioculturelles fortes, susceptibles de modeler l’image d’un produit et d’en déterminer à notoriété et le prix. Dans un monde médiatisé comme le nôtre, le visuel construit l’arrière-plan des représentations mentales associées à toute marchandise ; et pour les aliments, produits de la terre, ce visuel est forcément paysager.

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies.