IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Cork and Wine: interactions and newly formed compounds

Cork and Wine: interactions and newly formed compounds

Abstract

When the cork is in direct contact with an alcoholic solution such as in case of a bottle wine, some cork components can migrate into the wine. Volatile and non-volatile compounds soluble in ethanol/water such as carbohydrates, alcohols, ketones, phenolic compounds including tannins that were already proved to pass from cork to wine, are of oenological importance due to their contribution to sensory properties (color, flavor, astringency and bitterness). There is an oenological interest regarding wood barrels since it has been demonstrated that they could also impact on wine organoleptic properties (aroma, color and taste) during oak ageing.Cork stoppers are believed to participate in the same interactions, as the nature of the compounds that are able to pass to wine are from the same families but depend on the contact time, the bottle position during storage and on the type of cork.This work has as main propose to study the interections between compounds extracted from cork by wine model solutions and the evaluation of the reactivity of these with two main classes of compounds present in red wines, namely flavan-3-ols ((+)-catechin) and anthocyanins (Malvidin-3-O-glucoside). With this information, the winemakers can choose varieties of cork stoppers to upgrade wine quality during storage and ageing.This work consisted on studying the reaction in wine model solution (12% ethanol, pH 3.2) of phenolic compounds like phenolic acids, aldehydes and tannins with (+)- catechin and malvidin-3-O-glucoside. From these reactions, different compounds were formed:
i) Pinotins (Pyranomalvidin3glucoside- Catechol and Pyranomalvidin3glucoside- Guaiacol);
ii) Xanthylium Salts (formed by two catechins units and vanillin);
iii) Dimer Catechin-Vanillin-Catechin;iv) Corklins (this new compound results from interaction between ellagitannins in alcoholic solutions, yielding an ethanolic derivate, and (+)-catechin;v) Acutissimin;vi) Catechin-Caffeic acid adduct. The newly found compound was detected and identified in these reactions with an ion mass in negative mode at m/z 467, with a fragmentation pattern compatible with the loss of -44 units (acid), -178 units (caffeic acid), -152 (Retro Diels Alder, characteristic of catechin).The struture of the (+)-catechin-caffeic acid adduct was determined by NMR (1H, COSY, HSQC and HMBC).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Azevedo Joana1, Oliveira Joana1, Lopes Paulo2, Mateus Nuno3 and De Freitas Victor3

1Faculty of Science the University of Porto, Rua Campo Alegre S/N, 4169-007 Porto, Portugal
2Amorim & Irmãos, Rua Corticeiros, 4536-904 S M Lamas, Portugal
3FCUP- Chemistry and Biochemistry Department of Faculty of Science University of Porto

Contact the author

Keywords

Cork, Wine, Polyphenols, Reactivity, Catechin-Caffeic acid adduct

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Assessing and mapping vineyard water status variability using a miniaturized nir spectrophotometer from a moving vehicle

In the actual scenario of climate change, optimization of water usage is becoming critical in sustainable viticulture. Most of the current approaches to assess grapevine water status and drive irrigation scheduling are either destructive, time and labour consuming and monitor a small, limited number of plants. This work presents a novel methodology using a contactless, miniaturized, low-cost NIR spectrometer to monitor the vineyard water status variability from a moving vehicle, to provide reliable information towards precision irrigation.

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms.

Cover crops in viticulture

In this audio recording of the IVES science meeting 2022, Gonzaga Santesteban (Department of Agronomy, Biotechnology and Food Science, Public University of Navarra (UPNA), Pamplona, Navarra, Spain) speaks about cover crops in viticulture. This presentation is based on 2 original articles accessible for free on OENO One.