IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Cork and Wine: interactions and newly formed compounds

Cork and Wine: interactions and newly formed compounds

Abstract

When the cork is in direct contact with an alcoholic solution such as in case of a bottle wine, some cork components can migrate into the wine. Volatile and non-volatile compounds soluble in ethanol/water such as carbohydrates, alcohols, ketones, phenolic compounds including tannins that were already proved to pass from cork to wine, are of oenological importance due to their contribution to sensory properties (color, flavor, astringency and bitterness). There is an oenological interest regarding wood barrels since it has been demonstrated that they could also impact on wine organoleptic properties (aroma, color and taste) during oak ageing.Cork stoppers are believed to participate in the same interactions, as the nature of the compounds that are able to pass to wine are from the same families but depend on the contact time, the bottle position during storage and on the type of cork.This work has as main propose to study the interections between compounds extracted from cork by wine model solutions and the evaluation of the reactivity of these with two main classes of compounds present in red wines, namely flavan-3-ols ((+)-catechin) and anthocyanins (Malvidin-3-O-glucoside). With this information, the winemakers can choose varieties of cork stoppers to upgrade wine quality during storage and ageing.This work consisted on studying the reaction in wine model solution (12% ethanol, pH 3.2) of phenolic compounds like phenolic acids, aldehydes and tannins with (+)- catechin and malvidin-3-O-glucoside. From these reactions, different compounds were formed:
i) Pinotins (Pyranomalvidin3glucoside- Catechol and Pyranomalvidin3glucoside- Guaiacol);
ii) Xanthylium Salts (formed by two catechins units and vanillin);
iii) Dimer Catechin-Vanillin-Catechin;iv) Corklins (this new compound results from interaction between ellagitannins in alcoholic solutions, yielding an ethanolic derivate, and (+)-catechin;v) Acutissimin;vi) Catechin-Caffeic acid adduct. The newly found compound was detected and identified in these reactions with an ion mass in negative mode at m/z 467, with a fragmentation pattern compatible with the loss of -44 units (acid), -178 units (caffeic acid), -152 (Retro Diels Alder, characteristic of catechin).The struture of the (+)-catechin-caffeic acid adduct was determined by NMR (1H, COSY, HSQC and HMBC).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Azevedo Joana1, Oliveira Joana1, Lopes Paulo2, Mateus Nuno3 and De Freitas Victor3

1Faculty of Science the University of Porto, Rua Campo Alegre S/N, 4169-007 Porto, Portugal
2Amorim & Irmãos, Rua Corticeiros, 4536-904 S M Lamas, Portugal
3FCUP- Chemistry and Biochemistry Department of Faculty of Science University of Porto

Contact the author

Keywords

Cork, Wine, Polyphenols, Reactivity, Catechin-Caffeic acid adduct

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The impact of global warming on Ontario’s icewine industry

Ontario’s wine regions lie at the climatic margins of commercial viticulture owing to their cold winters and short cool growing season. The gradual warming of northern latitudes projected under a human-induced climate change scenario could bring mixed benefits to these wine regions.

Phenological characterization of a wide range of Vitis Vinifera varieties

In order to study the impact of climate change on Bordeaux grape varieties and to assess the adaptation capacities of candidates to the grape varieties of this wine region to the new climatic conditions, an experimental block design composed of 52 grape varieties was set up in 2009 at the INRAE Bordeaux Aquitaine center. Among the many parameters studied, the three main phenological stages of the vine (budburst, flowering and veraison) have been closely monitored since 2012. Observations for each year, stage and variety were carried out on four independent replicates. Precocity indices have been calculated from the data obtained over the 2012-2021 period (Barbeau et al. 1998). This work allowed to group the phenological behaviour of the grapevine varieties, not only based on the timing of the subsequent developmental stages, but also on the overall precocity of the cycle and the total length of the cycle between budburst and veraison. Results regarding the variability observed among the different grape varieties for these phenological stages are presented as heat maps.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Study of yeast biocatalytic activity on grape aroma compounds

Many volatile compounds of different chemical/biochemical origin contribute to wine aroma. Certain key ‘varietal’ aroma compounds such as methoxypyrazines are formed in the grape and appear to be only scarcely influenced by fermentation.

Impact of malolactic fermentation on volatile composition and sensory properties of white and rosé wine from the greek variety moschofilero

Moschofilero is a native grape variety, classified as a ‘gris’ type variety, that is cultivated in PDO Mantineia, Peloponissos, Greece. It is used for the production of both white and rosé wines. Due to high altitude of the vineyards, the harvest is done by mid October, and many vintages are characterised by high acidities and low pH values.