IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Abstract

Despite its relevance for wine quality and stability, red wine colloids have not still been sufficiently investigated, an occurrence due to the lack of suitable analytical techniques to study them as they are present in wine. Recently, asymmetrical Flow Field-flow Fractionation (AF4) with online multidetection has been tested as a new analytical tool to this aim, revealing its suitability for quantification, fractionation, and characterization of wine colloids in native state [1]. With the aim to characterize red wines in relation to their colloidal composition, AF4 technique was applied to 24 monovarietal Italian wines kept in bottles for 2 years and produced without any filtration, oak contact, fining treatments, malolactic fermentation or ageing on yeast lees. AF4 analysis allowed to quantify wine colloids, and to characterize them in terms of dimensions (by MALS) and absorbance (A280 & A520 nm). MALS revealed that each wine contained several colloids’ populations of different sizes (from 10 to 130 nm), but most of them showed sizes in the range 20 – 40 nm. The comparison by AF4 analysis of the A280-absorbing species present in whole wines with that of wines containing only species larger than 5 kDa (which were considered as colloids) allowed to calculate for each wine the percentage of molecules involved in the assembly of colloidal particles. This calculation showed that in the different samples the percentage of colloids varied from 1 to 44% of the total A280 absorbing compounds, indicating the diversity of the wines. Given that the A280 signal is mostly due to phenolics and proteins, these data indicate that very different percentages of these compounds participate in the formation of particles in the 20 – 40 nm size range. This means that phenolics necessarily need to be associated with other wine components to form particles of those dimensions. This association should involve proteins and polysaccharides [1]. The A520 data indicated the presence of pigments in the colloidal fraction. These pigments are likely to be constituted of tannin-anthocyanins complexes (polymeric pigments). Therefore, given the absence of species with sizes <20 nm, an association of these colored complexes with other colloidal-forming compounds seems necessary, the obvious candidate being proteins as they are known to strongly interact with tannins. Our results suggest that the color of red wines is due, in addition to free oligomeric pigments, also to colloidal particles formed by these latter bound to proteins, and that the quantity of these particles is highly variable in wines from different origin. How the presence of proteins affects the stability and evolution of red wines’ color remains to be investigated, keeping into consideration also the contribution of wine polysaccharides, which have been previously found to be part of the red wine colloidal particles [1].

References

[1] Marassi, et al. Food Hydrocoll 2021;110:106204.
Acknowledgments: MIUR project PRIN n.20157RN44Y

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Marangon Matteo1, Marassi Valentina2, Roda Barbara2, Zattoni Andrea2, Reschiglian Pierluigi2, Mattivi Fulvio3,4, Moio Luigi5, Parpinello Giuseppina Paola6, Piombino Paola5, Río Segade Susana7, Rolle Luca7, Slaghenaufi Davide8, Versari Andrea6, Vrhovsek Urska4, Ugliano Maurizio8 and Curioni Andrea1

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
2Department of Chemistry “G. Ciamician”, University of Bologna, Italy
3Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Italy
4Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
5Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, Italy
6Department of Agricultural and Food Sciences, University of Bologna, Italy
7Department of Agricultural, Forest and Food Sciences, University of Torino, Italy
8Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

red wine, colloids, proteins, polysaccharides, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

The new EU Green Deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050.
REDWine concept will be realized through the establishment of an integrated Living Lab demonstrating the viability of the system at TRL 7. The Living Lab will be able to utilize 2 ton of fermentation off-gas/year (90% of total CO2 produced in the fermenter) and 80 m3 of liquid effluent (100% of the liquid effluent generated during fermenter washing) to produce 1 ton (dry weight) of Chlorella biomass/year. This biomass will be processed under a downstream extraction process to obtain added-value extracts and applied in food, cosmetic and agricultural end-products and to generate a new EcoWine. REDWine will focus on the recovery of off-gas from a 20.000L fermenter of red wine production existing in Adega Cooperativa de Palmela (ACP, located in Palmela, Portugal).

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Evaluating alternatives to cold stabilization in wineries: the use of carboximethyl cellulose, potassium polyaspartate, electrodialysis and ion exchange resins – the results after one year in the bottle

The tartaric stabilization of wines before bottling to avoid the precipitation of tartaric acid salts is an important and common step during wine production. The presence of precipitated salt crystals in bottle wines is detrimental for their quality and even a legal issue in some countries. Cold stabilization is the most common stabilization treatment. Although it has been shown to be effective, it has some significant disadvantages, mainly regarding losses of color and aromas and its high cost. Therefore, other products and methodologies are being introduced in the wineries for the replacement of this process. Some of these new techniques involve the reduction of the ions causing the insolubilization of tartaric acid while other are based in the formation of protective colloids or the inhibition of the crystallization of salts. In this study, white, rosé and red wines have been treated with carboxymethylcellulose, potassium polyaspartate and an ion exchange resin. The tartaric stability of the wines, together with the oenological, chromatic and sensory characteristics were studied after the wines had been stored during one year in the bottle. The results indicate that the use of carboxymethyl cellulose and potassium polyaspartate maintained the best the sensory and chromatic characteristics and the wine stability of the wines in comparison with an untreated control wine.

Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Soil management through cover crops can influence the cycle of nutrients, promote water infiltration, decrease erosion, and enhance the soil microbiota biodiversity, improving the grapevine performance. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in semi-arid climates. Use of covers under-vine might be an alternative to these practices aiming at grapevine quality and soil health improvement. The aim of this research was to study the implications of soil management under the vines (cultivation and cover crops) on growth, yield, berry composition and soil microbial communities. A cover crop composed by a mixture of legumes was sown and compared with a control (cultivation), which includes frequent tillage to keep the soil bare, in three areas characterized by different edaphoclimatic conditions in the region of Navarra.

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption.