IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Abstract

Despite its relevance for wine quality and stability, red wine colloids have not still been sufficiently investigated, an occurrence due to the lack of suitable analytical techniques to study them as they are present in wine. Recently, asymmetrical Flow Field-flow Fractionation (AF4) with online multidetection has been tested as a new analytical tool to this aim, revealing its suitability for quantification, fractionation, and characterization of wine colloids in native state [1]. With the aim to characterize red wines in relation to their colloidal composition, AF4 technique was applied to 24 monovarietal Italian wines kept in bottles for 2 years and produced without any filtration, oak contact, fining treatments, malolactic fermentation or ageing on yeast lees. AF4 analysis allowed to quantify wine colloids, and to characterize them in terms of dimensions (by MALS) and absorbance (A280 & A520 nm). MALS revealed that each wine contained several colloids’ populations of different sizes (from 10 to 130 nm), but most of them showed sizes in the range 20 – 40 nm. The comparison by AF4 analysis of the A280-absorbing species present in whole wines with that of wines containing only species larger than 5 kDa (which were considered as colloids) allowed to calculate for each wine the percentage of molecules involved in the assembly of colloidal particles. This calculation showed that in the different samples the percentage of colloids varied from 1 to 44% of the total A280 absorbing compounds, indicating the diversity of the wines. Given that the A280 signal is mostly due to phenolics and proteins, these data indicate that very different percentages of these compounds participate in the formation of particles in the 20 – 40 nm size range. This means that phenolics necessarily need to be associated with other wine components to form particles of those dimensions. This association should involve proteins and polysaccharides [1]. The A520 data indicated the presence of pigments in the colloidal fraction. These pigments are likely to be constituted of tannin-anthocyanins complexes (polymeric pigments). Therefore, given the absence of species with sizes <20 nm, an association of these colored complexes with other colloidal-forming compounds seems necessary, the obvious candidate being proteins as they are known to strongly interact with tannins. Our results suggest that the color of red wines is due, in addition to free oligomeric pigments, also to colloidal particles formed by these latter bound to proteins, and that the quantity of these particles is highly variable in wines from different origin. How the presence of proteins affects the stability and evolution of red wines’ color remains to be investigated, keeping into consideration also the contribution of wine polysaccharides, which have been previously found to be part of the red wine colloidal particles [1].

References

[1] Marassi, et al. Food Hydrocoll 2021;110:106204.
Acknowledgments: MIUR project PRIN n.20157RN44Y

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Marangon Matteo1, Marassi Valentina2, Roda Barbara2, Zattoni Andrea2, Reschiglian Pierluigi2, Mattivi Fulvio3,4, Moio Luigi5, Parpinello Giuseppina Paola6, Piombino Paola5, Río Segade Susana7, Rolle Luca7, Slaghenaufi Davide8, Versari Andrea6, Vrhovsek Urska4, Ugliano Maurizio8 and Curioni Andrea1

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
2Department of Chemistry “G. Ciamician”, University of Bologna, Italy
3Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Italy
4Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
5Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, Italy
6Department of Agricultural and Food Sciences, University of Bologna, Italy
7Department of Agricultural, Forest and Food Sciences, University of Torino, Italy
8Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

red wine, colloids, proteins, polysaccharides, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors.

First disclosure of eugenol precursors in Vitis genus: analytical development and quantification

The main aim of this work was to develop an analytical method to disclosure the
molecular form of eugenol precursor. Indeed eugenol is an important contributor to
Armagnac spirits typicity made with Baco blanc.

Physicochemical parameters of juices made from different grape varieties in the 2019 and 2020 Harvests of Rio Grande do Sul

This study evaluated the physicochemical parameters of grape juices produced in the serra gaúcha from the 2019 and 2020 harvests. To do this, 43 juice samples were analyzed, and divided into four distinct categories: juices made exclusively from bordô grapes (sb), juices made from bordô and niágara grapes (sbn), juices combining bordô and isabel grapes, and juices made from cuts of several grape varieties.

Towards a unified terroir zoning methodology in viticulture

In viticulture, terroir is a key concept that refers to an area and thus possesses a geographical dimension. Hence, zoning of viticultural terroir is an important issue

Paysages viticoles et terroir dans l’OAC Ribeira Sacra (Galice, NO de l’Espagne)

The concept of Appellation d’Origine Contrôlée (AOC) is based on the existence of a link between the characteristics of the terroir and the quality and typicality of the production (DELAS, 2000). If for a long time, this link only appeared as the fruit of empiricism, the research undertaken recently has made it possible to scientifically establish the complex relationships between the functioning of natural environments and the ability to produce quality.