IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Abstract

Despite its relevance for wine quality and stability, red wine colloids have not still been sufficiently investigated, an occurrence due to the lack of suitable analytical techniques to study them as they are present in wine. Recently, asymmetrical Flow Field-flow Fractionation (AF4) with online multidetection has been tested as a new analytical tool to this aim, revealing its suitability for quantification, fractionation, and characterization of wine colloids in native state [1]. With the aim to characterize red wines in relation to their colloidal composition, AF4 technique was applied to 24 monovarietal Italian wines kept in bottles for 2 years and produced without any filtration, oak contact, fining treatments, malolactic fermentation or ageing on yeast lees. AF4 analysis allowed to quantify wine colloids, and to characterize them in terms of dimensions (by MALS) and absorbance (A280 & A520 nm). MALS revealed that each wine contained several colloids’ populations of different sizes (from 10 to 130 nm), but most of them showed sizes in the range 20 – 40 nm. The comparison by AF4 analysis of the A280-absorbing species present in whole wines with that of wines containing only species larger than 5 kDa (which were considered as colloids) allowed to calculate for each wine the percentage of molecules involved in the assembly of colloidal particles. This calculation showed that in the different samples the percentage of colloids varied from 1 to 44% of the total A280 absorbing compounds, indicating the diversity of the wines. Given that the A280 signal is mostly due to phenolics and proteins, these data indicate that very different percentages of these compounds participate in the formation of particles in the 20 – 40 nm size range. This means that phenolics necessarily need to be associated with other wine components to form particles of those dimensions. This association should involve proteins and polysaccharides [1]. The A520 data indicated the presence of pigments in the colloidal fraction. These pigments are likely to be constituted of tannin-anthocyanins complexes (polymeric pigments). Therefore, given the absence of species with sizes <20 nm, an association of these colored complexes with other colloidal-forming compounds seems necessary, the obvious candidate being proteins as they are known to strongly interact with tannins. Our results suggest that the color of red wines is due, in addition to free oligomeric pigments, also to colloidal particles formed by these latter bound to proteins, and that the quantity of these particles is highly variable in wines from different origin. How the presence of proteins affects the stability and evolution of red wines’ color remains to be investigated, keeping into consideration also the contribution of wine polysaccharides, which have been previously found to be part of the red wine colloidal particles [1].

References

[1] Marassi, et al. Food Hydrocoll 2021;110:106204.
Acknowledgments: MIUR project PRIN n.20157RN44Y

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Marangon Matteo1, Marassi Valentina2, Roda Barbara2, Zattoni Andrea2, Reschiglian Pierluigi2, Mattivi Fulvio3,4, Moio Luigi5, Parpinello Giuseppina Paola6, Piombino Paola5, Río Segade Susana7, Rolle Luca7, Slaghenaufi Davide8, Versari Andrea6, Vrhovsek Urska4, Ugliano Maurizio8 and Curioni Andrea1

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
2Department of Chemistry “G. Ciamician”, University of Bologna, Italy
3Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Italy
4Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
5Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, Italy
6Department of Agricultural and Food Sciences, University of Bologna, Italy
7Department of Agricultural, Forest and Food Sciences, University of Torino, Italy
8Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

red wine, colloids, proteins, polysaccharides, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.

The effect of viticultural treatment on grape juice chemical composition

Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology

Physical-chemical characterization of Moscatel de Setúbal fortified wines from different vintages

Moscatel de Setúbal is a Portuguese fortified wine with Protected Designation of Origin (PDO Setúbal), made from Moscatel de Setúbal grape variety (Muscat of Alexandria) [1].

Developmental and genetic mechanisms underlying seedlessness in grapevine somatic variants

Seedless table grapes are greatly appreciated for fresh and dry consumption. There is also some interest in seedless winegrapes, because the combination of lower fruit set, smaller berries with higher skin/pulp ratio and looser bunches with the absence of seeds in crushed berries, a possible source of astringent tannins, might also have favorable effects on wine quality.
The gene VviAGL11 has been shown to play a central role in stenospermocarpy in Sultanina, but the molecular bases of other sources of stenospermocarpy as well as of parthenocarpy have not been clarified yet.

Il sistema vigneto del Lago di Bolsena: caratterizzazione della produzione di Cannaiola di Marta

Il comprensorio del Lago di Bolsena (VT) è un territorio ad elevata vocazione vitivinicola in cui il paesaggio della vite storicamente persiste e caratterizza la fisionomia dei luoghi. Qui gli agroecosistemi viticoli possiedono una valenza ecologico-ambientale, storico-culturale ed economica di rilievo.