IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Vitamins in grape must: let’s lift a corner of the veil

Vitamins in grape must: let’s lift a corner of the veil

Abstract

Although vitamins stand as major actors to yeasts prime metabolic pathways, their significance in oenology and winemaking remains rather obscure nowadays, having been mostly unexplored for several decades. While those investigations allowed for a primary estimation of the vitaminic contents of musts and wines, no quantification of their vitameric distribution has ever been performed. Here, in order to elucidate a still-obscure facet of wine composition, 19 different vitamers from 8 different vitaminic groups (B1, B2, B3, B5, B6, B8, B9, C) have been simultaneously and directly analyzed by an optimized rapid HPLC procedure in 85 white grape musts from different geographical origins, varieties, as well as vintages. This novel insight on must composition reflects the overall must diversity, since their vitameric contents vary highly between musts. Plus, this investigation provided leads for characterization of the matrix, since, notably, distinctive patterns could be observed in regards to the musts area of cultivation. Such an analytical tool allows for a precise estimation of the must contents in the different water-soluble vitamers, to provide with a
refined management of winemaking and avoid significant deficiencies that could occur during fermentation, or as a result of winemaking practices. As such, the impact held by some oenological practices on vitamins has also been investigated, and proved to have no significant effect. Overall, this offers ground for further determination of the vitamin significance in oenology, and provide a new tool for alcoholic fermentation management.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Evers Marie Sarah1,2, Alexandre Hervé1, Morge Christophe2, Sparrow Celine2, Gobert Antoine2 and Roullier-Gall Chloé1

1Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 2 rue Claude Ladrey, 21000 Dijon, France
2Sofralab SAS, 79 avenue A.A, Av. Alfred Anatole Thévenet, 51530 Magenta, France

Contact the author

Keywords

vitamins, grape must, HPLC, oenology, winemaking

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.

Active thermography to determine grape bud mortality: system design and feasibility

Bud death due to cold damage is a recurrent and major economic issue with Vitis vinifera L. in the Northeastern U.S. winegrowing regions. Primary buds – and sometimes secondary and tertiary buds – are often damaged by fluctuating temperatures in the winter and early spring. To maintain balanced vegetative and reproductive growth of a vine, pruning practices need to be adjusted to account for bud damage. Conventional bud damage assessment requires growers to sample canes/spurs, cut nodes with a razor blade, and then visually assess bud damage. This process is laborious and becomes a major barrier for damage-compensated pruning decision-making, leading to too few live buds per vine and the associated excessive vigor and low yield that result. The overarching goal of this study was to develop an active thermographic system for non-destructive detection of bud damage in the vineyard.

Intra-vineyard spatial variability explored over multiple seasons by sensor-based techniques in the Valpolicella area

The identification and management of intra-vineyard variability are key to precision viticulture, and sensors have been proven to be highly efficient tools for detecting these variations.

Screening table grape cultivars using cell wall ELISA and glycan microarrays for berry firmness and quality parameters

The crunchy texture of table grapes is one of the key quality parameters during production. This varies from cultivar to cultivar, stage of harvest and vineyard performance. Cell wall properties are key drivers of berry quality (e.g., pericarp firmness and intactness) at harvest and beyond. Common practise amongst producers is to continuously monitor firmness by evaluating pericarp appearance of cross-sectioned berries prior to harvest. These qualitative methods can be quite arbitrary and imprecise in their execution, but more quantitative, yet simple and high-throughput methods to evaluate these cell wall polymers are not yet readily available.