IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Vitamins in grape must: let’s lift a corner of the veil

Vitamins in grape must: let’s lift a corner of the veil

Abstract

Although vitamins stand as major actors to yeasts prime metabolic pathways, their significance in oenology and winemaking remains rather obscure nowadays, having been mostly unexplored for several decades. While those investigations allowed for a primary estimation of the vitaminic contents of musts and wines, no quantification of their vitameric distribution has ever been performed. Here, in order to elucidate a still-obscure facet of wine composition, 19 different vitamers from 8 different vitaminic groups (B1, B2, B3, B5, B6, B8, B9, C) have been simultaneously and directly analyzed by an optimized rapid HPLC procedure in 85 white grape musts from different geographical origins, varieties, as well as vintages. This novel insight on must composition reflects the overall must diversity, since their vitameric contents vary highly between musts. Plus, this investigation provided leads for characterization of the matrix, since, notably, distinctive patterns could be observed in regards to the musts area of cultivation. Such an analytical tool allows for a precise estimation of the must contents in the different water-soluble vitamers, to provide with a
refined management of winemaking and avoid significant deficiencies that could occur during fermentation, or as a result of winemaking practices. As such, the impact held by some oenological practices on vitamins has also been investigated, and proved to have no significant effect. Overall, this offers ground for further determination of the vitamin significance in oenology, and provide a new tool for alcoholic fermentation management.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Evers Marie Sarah1,2, Alexandre Hervé1, Morge Christophe2, Sparrow Celine2, Gobert Antoine2 and Roullier-Gall Chloé1

1Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 2 rue Claude Ladrey, 21000 Dijon, France
2Sofralab SAS, 79 avenue A.A, Av. Alfred Anatole Thévenet, 51530 Magenta, France

Contact the author

Keywords

vitamins, grape must, HPLC, oenology, winemaking

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Vine plant material: situation and prospect

vine plant material is one of the major factors of terroir. The vine numbers over 1,000 species, of which the main cultivated species, Vitis vinifera, includes some 6,000 varieties. For the last forty years, selection has been carried out on these, mainly through clonal selection. However, today, only 300 varieties present one or more clones. A dozen varieties are considered as international. The extreme requirements of selection, in terms of diseases, provoke the elimination of the majority of selected plants. This approach to selection is not thorough because it focuses mainly on elimination of virosis and phytoplasma diseases.

Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

This research aimed to study the effect and efficiency of foliar application of urea on the aromatic composition of red wines elaborated from Tempranillo grapes.

Effects of mesoclimate on the yield, quality and phenolic maturity of Grenache

The potential climate change, due to global change, will increase temperature general and could increase at local level. These changes are not going to be the same in different parts of the world, being especially important in the Mediterranean Basin.

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and

Terpenoid profiles and biosynthetic gene expression pattern in Asti DOCG white muscat grapes at ripening as affected by different canopy management protocols

Aim: The main goal of this study was to find an efficient canopy management to limit the high temperature-related aroma losses of White Muscat grapes, and consequently to preserve the quality standards of Asti DOCG wines.