IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Vitamins in grape must: let’s lift a corner of the veil

Vitamins in grape must: let’s lift a corner of the veil

Abstract

Although vitamins stand as major actors to yeasts prime metabolic pathways, their significance in oenology and winemaking remains rather obscure nowadays, having been mostly unexplored for several decades. While those investigations allowed for a primary estimation of the vitaminic contents of musts and wines, no quantification of their vitameric distribution has ever been performed. Here, in order to elucidate a still-obscure facet of wine composition, 19 different vitamers from 8 different vitaminic groups (B1, B2, B3, B5, B6, B8, B9, C) have been simultaneously and directly analyzed by an optimized rapid HPLC procedure in 85 white grape musts from different geographical origins, varieties, as well as vintages. This novel insight on must composition reflects the overall must diversity, since their vitameric contents vary highly between musts. Plus, this investigation provided leads for characterization of the matrix, since, notably, distinctive patterns could be observed in regards to the musts area of cultivation. Such an analytical tool allows for a precise estimation of the must contents in the different water-soluble vitamers, to provide with a
refined management of winemaking and avoid significant deficiencies that could occur during fermentation, or as a result of winemaking practices. As such, the impact held by some oenological practices on vitamins has also been investigated, and proved to have no significant effect. Overall, this offers ground for further determination of the vitamin significance in oenology, and provide a new tool for alcoholic fermentation management.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Evers Marie Sarah1,2, Alexandre Hervé1, Morge Christophe2, Sparrow Celine2, Gobert Antoine2 and Roullier-Gall Chloé1

1Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 2 rue Claude Ladrey, 21000 Dijon, France
2Sofralab SAS, 79 avenue A.A, Av. Alfred Anatole Thévenet, 51530 Magenta, France

Contact the author

Keywords

vitamins, grape must, HPLC, oenology, winemaking

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Creativini: an augmented reality card game to promote the learning of the reasoning process of a technical management route for making wine 

Nowadays, the entire viticultural and enological process is wisely thought out according to the style of wine to be produced and the local climatic conditions. Acquiring the approach of a technical management route specific for wine production remains a complex learning process for students. To enhance such learning, The Ecole d’Ingénieurs de PURPAN (PURPAN), an engineering school located in Toulouse southwest France, has recently developed Creativini, a collaborative card game in English made of 150 cards spread into 14 batches. Students in groups of 3 to 6 must design a technical production route, from plant material to bottling.

Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

This study focuses on investigating the effects of climate change on the plant physiology and berries of Vitis vinifera cv “Monastrell” in a commercial vineyard managed organically in Southeastern Spain (Jumilla, Murcia). For this purpose, open top chambers and rainout shelters were employed to simulate warming (~2-7 ºC, W) and rainfall reduction (~30%, RR) respectively. Additionally, a combination of both treatments (W+RR) was employed. Vines without either top chambers or rainout shelters were considered as control (C). The experiment was established in February of 2023. Predawn leaf water potential (measured using a pressure chamber), stomatal conductance (assessed with a porometer at mid-morning) and leaf chlorophyll and flavonoid content (measured using the Dualex® leaf clip sensor) were analyzed at veraison (5 months after the installation of structures).

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

The challenge of quality in sulphur dioxide free wines: natural polyphenol alternatives

Sulphur dioxide (SO2) seems indispensable in winemaking because of its properties. However, a current increasing concern about its allergies effects in food product has addressed the international research efforts on its replacement. This supposes a sufficient knowledge of its properties and conditions of use. Several studies compared SO2 properties against new alternatives that are supposed to overcome SO2 disadvantages. Firstly, the state of art on SO2 wine replacements is revised, and secondly, the last promising results using natural enriched polyphenol extracts are shown.