IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

Abstract

Anthocyanins and tannins contribute to important sensorial traits of red wines, such as color and mouthfeel attributes. Despite the evolution of flavonoids during berry ripening has been extensively studied and the properties of skin and flesh cell wall material (CWM) to bind tannins were described, the mechanism determining the reduction of unpleasant astringency in the last phases of ripening remained uncertain. In this regard, the present research was aimed to better understand the factors involved in the phenolic maturity by a detailed evaluation of the flavonoid characteristics and the CWM properties, in the last weeks before harvest and at harvest. The study was conducted in 2014 and 2015 in a Merlot vineyard located in the hills near Bologna (north of Italy). The analysis of flavonoids and skin CWM was performed on berries sampled 20 and 10 days before harvest and at harvest. Exhaustive extractions were conducted to analyze total anthocyanins and tannins (skin and seed separately), while a model hydroalcoholic solution was used for their extractable portion. Moreover, binding reactions between the CWM and an enological seed tannin were performed to evaluate the magnitude of tannin precipitation and the composition of the  tannins remained in solution.HPLC analysis showed the increase of total and extractable anthocyanins during ripening, while no change was found in the concentration, composition and mean degree of polymerization (mDP) of skin and seed tannins. Also, the composition of CWM did not change significantly, but the tendency of proteins to increase until the harvest was noticed in both years. Moreover, CWM bound increasing quantity of the enological seed tannin during ripening, favoring, in particular, the precipitation of the tannins with higher mDP and of the galloilated forms, which are reported to be the compounds more involved in the perception of unpleasant astringency. The analysis performed by SEC confirmed that CWM bound preferentially the tannins of high molecular mass (MM), while lower amounts of medium MM tannins and negligible quantities of low MM tannins interacted with CWM. Our results confirmed that more ripen berries may release higher amounts of anthocyanins and allowed us to hypothesize that CWM may play a role in the decrease of astringency which is associated with the progression of ripening.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Allegro Gianluca1, Bautista-Ortín Ana-Belén2, Gómez-Plaza Encarna2, Pastore Chiara1,  Valentini Gabriele1, Mazzoleni Riccardo1 and Filippetti Ilaria1

1Department of Agricultural and Food Sciences – University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
2Departamento de Tecnología de Alimentos, Nutrición y Bromatología – Universidad de Murcia (Spain)

Contact the author

Keywords

anthocyanins, astringency, ripening, tannins, Vitis vinifera

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Tutela legale delle denominazioni di origine nel mondo (con aspetti applicativi)

Uno degli aspetti più importanti nel commercio internazionale dei vini a denominazione è quello del riconoscimento dei diritti di esclusiva garantiti sui e dal territorio geografico d’o­rigine. Al fine di cautelarsi nei confronti della sempre più agguerrita concorrenza mondiale, è opportuno adottare adeguate protezioni ufficiali e legali delle denominazioni che possono derivare sia dalla “naturalità” del prodotto stesso che dalla “originalità” più particolare.

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

Stabilità dei caratteri fenotipici dl alcune cv in diversi pedopaesaggi friulani. Applicazione del metodo nella caratterizzazione viticola del comprensorio DOC “Friuli-Grave”

This communication was estracted from a study concerning the viticultural characterization of A.V.A. “Friuli-Grave” area sponsored by Chamber of Commerce of Pordenone.

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH).