IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Abstract

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed. Although often less considered than grape material, rachis contains comparatively higher concentrations of MPs, and Cabernet Sauvignon and Shiraz scions grafted onto rootstocks may influence the concentration of these compounds in the rachis. This work investigated the impact of region, scion, light, and rootstock on the concentration of MPs in the rachis of Shiraz and Cabernet Sauvignon at harvest. Grape bunches from Cabernet Sauvignon and Shiraz vines grown on common rootstocks within a number of Australian Geographical Indications (GIs) were
sampled at maturity across multiple vintages. Berries were removed and rachis material was segmented, extracted, and analysed for IBMP, IPMP, and SBMP by GC-MS/MS using a stable isotope dilution assay. Pruning weights were recorded as indicative measures of vegetative growth over the previous season for a single GI for both Cabernet Sauvignon and Shiraz vines and light exclusion boxes were applied to bunches to investigate the effect of shading. Data analysis was achieved with linear mixed models, one-way analysis of variance, and linear regression. The research showed that MP concentrations in Shiraz rachis at harvest were significantly impacted by GI and an interaction effect was observed between growing region and rootstock, with IBMP in the rachis ranging from an average of 21 ng/kg to 690 ng/kg across different regions and rootstocks. It was hypothesised that rootstock-mediated vine vigour influenced MP concentrations due to changes in canopy porosity and size, altering light interception by the grape bunches. This was supported by a statistically significant positive linear relationship with vine vigour independent of scion variety. The importance of light interception on MP concentrations was seen with the application of light exclusion boxes to bunches at veraison, resulting in an increase in mean IBMP concentration in rachis by up to 8 times compared to the unboxed controls. Vine vigour and rootstock significantly impacted the concentration of MPs in Cabernet Sauvignon and Shiraz rachis at harvest, with Shiraz rachis being significantly affected by GI. These findings provide grapegrowers with knowledge to assist in the selection of new rootstocks for plantings or management of existing ones and equip winemakers with decision-making tools for achieving wines of targeted style and quality with respect to MP concentrations.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Sanders Ross1, Boss Paul1, Capone Dimitra1, Kidman Catherine2 and Jeffery David1

1Australian Research Council Training Centre for Innovative Wine Production and Department of Wine Science, The University of Adelaide, and Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, PMB 1, Glen Osmond SA 5064, Australia
2Wynns Coonawarra Estate

Contact the author

Keywords

3-isobutyl-2-methoxypyrazine, 3-isopropyl-2-methoxypyrazine, vigour, rootstock, geographical indication

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

The southern Côtes-du-Rhône vineyard shows a significant variety of ecological facets over the Lower Rhone Valley. Intending to characterize such a variety of “terroir “called vineyard situations, a spatial approach based on identification of soil landscapes has been initiated.

Free amino acid composition of must from 7 Vitis vinifera L. cv. in Latium (Italy)

Free amino acid concentrations in must of 7 Vitis vinifera cultivars (Cabernet Franc, Syrah, Merlot, Montepulciano, Sangiovese, Cesanese d’Affile, Carmenere) grown in the Latium region (Italy) were monitored from 2003 to 2005. The cultivars were located in a homogeneous soil and climatic zone and with the same training system (Cordon Spur).

Eugenol:  a new marker of hybrid vines? The case study of Baco Blanc in Armagnac

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference. Trying to propose practice improvements, scientists are exploring vine hybridization a paradoxically old but still actual way to take up such challenges

Effect of early defoliation on volatile composition and sensory properties of aglianico red wines

The aim of this work was to study the influence of early defoliation in the vineyard on Aglianico wines quality from Apulia region (Italy). Early defoliation was conducted in commercial Aglianico

Assessment of alternative sweetening methods for dealcoholized wine

In recent years, there has been an increase in demand for non-alcoholic wine with an ethanol content of less than 0.5% v/v. The dealcoholization process can take place by various methods, such as vacuum distillation or membrane technologies like osmotic distillation. Compared to distillation, membrane systems often require multiple passes or a combination of multiple separation methods. Complete or almost complete removal of ethanol significantly changes the sensory characteristics of wine.