IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Abstract

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed. Although often less considered than grape material, rachis contains comparatively higher concentrations of MPs, and Cabernet Sauvignon and Shiraz scions grafted onto rootstocks may influence the concentration of these compounds in the rachis. This work investigated the impact of region, scion, light, and rootstock on the concentration of MPs in the rachis of Shiraz and Cabernet Sauvignon at harvest. Grape bunches from Cabernet Sauvignon and Shiraz vines grown on common rootstocks within a number of Australian Geographical Indications (GIs) were
sampled at maturity across multiple vintages. Berries were removed and rachis material was segmented, extracted, and analysed for IBMP, IPMP, and SBMP by GC-MS/MS using a stable isotope dilution assay. Pruning weights were recorded as indicative measures of vegetative growth over the previous season for a single GI for both Cabernet Sauvignon and Shiraz vines and light exclusion boxes were applied to bunches to investigate the effect of shading. Data analysis was achieved with linear mixed models, one-way analysis of variance, and linear regression. The research showed that MP concentrations in Shiraz rachis at harvest were significantly impacted by GI and an interaction effect was observed between growing region and rootstock, with IBMP in the rachis ranging from an average of 21 ng/kg to 690 ng/kg across different regions and rootstocks. It was hypothesised that rootstock-mediated vine vigour influenced MP concentrations due to changes in canopy porosity and size, altering light interception by the grape bunches. This was supported by a statistically significant positive linear relationship with vine vigour independent of scion variety. The importance of light interception on MP concentrations was seen with the application of light exclusion boxes to bunches at veraison, resulting in an increase in mean IBMP concentration in rachis by up to 8 times compared to the unboxed controls. Vine vigour and rootstock significantly impacted the concentration of MPs in Cabernet Sauvignon and Shiraz rachis at harvest, with Shiraz rachis being significantly affected by GI. These findings provide grapegrowers with knowledge to assist in the selection of new rootstocks for plantings or management of existing ones and equip winemakers with decision-making tools for achieving wines of targeted style and quality with respect to MP concentrations.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Sanders Ross1, Boss Paul1, Capone Dimitra1, Kidman Catherine2 and Jeffery David1

1Australian Research Council Training Centre for Innovative Wine Production and Department of Wine Science, The University of Adelaide, and Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, PMB 1, Glen Osmond SA 5064, Australia
2Wynns Coonawarra Estate

Contact the author

Keywords

3-isobutyl-2-methoxypyrazine, 3-isopropyl-2-methoxypyrazine, vigour, rootstock, geographical indication

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

Exploring the potential of agrivoltaics in German vineyards: A GIS-based assessment

The growing demand for renewable energy and sustainable agricultural practices has highlighted the potential of agrivoltaics (Agri-PV) as a promising solution, particularly in the context of German viticulture.

Soil proximal sensing provides direction in delineating plant water status of ‘crimson seedless’ (Vitis vinifera L.) vineyards

Crimson Seedless’ (Vitis vinifera L.) is a late-ripening, red seedless table grape cultivar with inadequate anthocyanin accumulation and less than ideal berry size issues

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.