IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Abstract

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed. Although often less considered than grape material, rachis contains comparatively higher concentrations of MPs, and Cabernet Sauvignon and Shiraz scions grafted onto rootstocks may influence the concentration of these compounds in the rachis. This work investigated the impact of region, scion, light, and rootstock on the concentration of MPs in the rachis of Shiraz and Cabernet Sauvignon at harvest. Grape bunches from Cabernet Sauvignon and Shiraz vines grown on common rootstocks within a number of Australian Geographical Indications (GIs) were
sampled at maturity across multiple vintages. Berries were removed and rachis material was segmented, extracted, and analysed for IBMP, IPMP, and SBMP by GC-MS/MS using a stable isotope dilution assay. Pruning weights were recorded as indicative measures of vegetative growth over the previous season for a single GI for both Cabernet Sauvignon and Shiraz vines and light exclusion boxes were applied to bunches to investigate the effect of shading. Data analysis was achieved with linear mixed models, one-way analysis of variance, and linear regression. The research showed that MP concentrations in Shiraz rachis at harvest were significantly impacted by GI and an interaction effect was observed between growing region and rootstock, with IBMP in the rachis ranging from an average of 21 ng/kg to 690 ng/kg across different regions and rootstocks. It was hypothesised that rootstock-mediated vine vigour influenced MP concentrations due to changes in canopy porosity and size, altering light interception by the grape bunches. This was supported by a statistically significant positive linear relationship with vine vigour independent of scion variety. The importance of light interception on MP concentrations was seen with the application of light exclusion boxes to bunches at veraison, resulting in an increase in mean IBMP concentration in rachis by up to 8 times compared to the unboxed controls. Vine vigour and rootstock significantly impacted the concentration of MPs in Cabernet Sauvignon and Shiraz rachis at harvest, with Shiraz rachis being significantly affected by GI. These findings provide grapegrowers with knowledge to assist in the selection of new rootstocks for plantings or management of existing ones and equip winemakers with decision-making tools for achieving wines of targeted style and quality with respect to MP concentrations.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Sanders Ross1, Boss Paul1, Capone Dimitra1, Kidman Catherine2 and Jeffery David1

1Australian Research Council Training Centre for Innovative Wine Production and Department of Wine Science, The University of Adelaide, and Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, PMB 1, Glen Osmond SA 5064, Australia
2Wynns Coonawarra Estate

Contact the author

Keywords

3-isobutyl-2-methoxypyrazine, 3-isopropyl-2-methoxypyrazine, vigour, rootstock, geographical indication

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Integration of wine cultivation history for characterizing the terroirs of Côte d’Or (Burgundy, France)

Les aires d’appellations de la Côte d’Or résultent d’une sélection humaine empirique, historique et évolutive en adéquation avec les facteurs naturels. Afin de comprendre quels facteurs naturels et humains agissent sur le caractère et l’évolution des terroirs des Côtes de Nuits et de Beaune, une méthodologie de recherche a été développée. Elle s’articule autour de deux axes, la caractérisation physique des lieux-dits viticoles et l’historicité de la qualité de ces lieux-dits. Le travail avec un S.I.G permet d’étudier l’évolution spatiale et temporelle de la qualité.

Evaluation of grape and wine quality according to harvest date, in a tropical region in Northeast Brazil

The Northeast region of Brazil is characterized by a semi-arid climate, has produced tropical wines since twenty years ago. The region is located at 09º 09’ South, 40º 22’ West, 365.5 m

Développement du concept d’Appellation d’Origine Contrôlée et d’Indication Géographique

L’identification des produits par le nom de la ville, de la région, de la province d’origine d’un produit tend aujourd’hui à se développer partout dans le monde et notamment dans le secteur agro-alimentaire, mais aussi dans les secteurs des produits artisanaux.

Enhancing plant defense: carbon dots for efficient spray-induced gene silencing 

Ectopic RNA application for plant defense faces challenges in tree crops, including size, diffusion, and stability of active compounds such as ribonucleoproteins and nucleic acids. While existing strategies involve expressing dsRNA in transgenic plants targeting pathogens, our research strives to develop a transient RNAi system based on Spray-Induced Gene Silencing (SIGS). This approach aims to circumvent legal barriers and public concerns associated with genetically modified organisms (GMOs). Our strategy integrates SIGS with branched polyethyleneimine-functionalized Carbon Dots (bPEI-CDs) as nanocarriers, effectively addressing unique delivery challenges in plant defense as RNA stability and uptake enhancement

Rootstock x environment interaction shapes shoot system phenotypic variation in grafted ‘Chambourcin’

Recent advances in phenomics and transcriptomics have the enhanced capacity for understanding how clonally propagated perennial crops like grapevines respond to their environments seasonally and over the course of multiple years. Because most grapevines are grafted, above-ground grapevine traits reflect scion genotype and its interaction with the local environment. In addition, traits expressed by the scion reflect rootstock genotype and how that rootstock is interacting with its environment seasonally and across years. To investigate rootstock x environment interaction on shoot systems in grafted grapevines we characterized comprehensive phenotypic variation in an experimental vineyard in Mount Vernon, Missouri, USA where the grapevine cultivar ‘Chambourcin’ is growing on its own roots and is grafted to three different rootstocks (‘1103P’, ‘3309C’, ‘SO4’).