IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Abstract

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed. Although often less considered than grape material, rachis contains comparatively higher concentrations of MPs, and Cabernet Sauvignon and Shiraz scions grafted onto rootstocks may influence the concentration of these compounds in the rachis. This work investigated the impact of region, scion, light, and rootstock on the concentration of MPs in the rachis of Shiraz and Cabernet Sauvignon at harvest. Grape bunches from Cabernet Sauvignon and Shiraz vines grown on common rootstocks within a number of Australian Geographical Indications (GIs) were
sampled at maturity across multiple vintages. Berries were removed and rachis material was segmented, extracted, and analysed for IBMP, IPMP, and SBMP by GC-MS/MS using a stable isotope dilution assay. Pruning weights were recorded as indicative measures of vegetative growth over the previous season for a single GI for both Cabernet Sauvignon and Shiraz vines and light exclusion boxes were applied to bunches to investigate the effect of shading. Data analysis was achieved with linear mixed models, one-way analysis of variance, and linear regression. The research showed that MP concentrations in Shiraz rachis at harvest were significantly impacted by GI and an interaction effect was observed between growing region and rootstock, with IBMP in the rachis ranging from an average of 21 ng/kg to 690 ng/kg across different regions and rootstocks. It was hypothesised that rootstock-mediated vine vigour influenced MP concentrations due to changes in canopy porosity and size, altering light interception by the grape bunches. This was supported by a statistically significant positive linear relationship with vine vigour independent of scion variety. The importance of light interception on MP concentrations was seen with the application of light exclusion boxes to bunches at veraison, resulting in an increase in mean IBMP concentration in rachis by up to 8 times compared to the unboxed controls. Vine vigour and rootstock significantly impacted the concentration of MPs in Cabernet Sauvignon and Shiraz rachis at harvest, with Shiraz rachis being significantly affected by GI. These findings provide grapegrowers with knowledge to assist in the selection of new rootstocks for plantings or management of existing ones and equip winemakers with decision-making tools for achieving wines of targeted style and quality with respect to MP concentrations.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Sanders Ross1, Boss Paul1, Capone Dimitra1, Kidman Catherine2 and Jeffery David1

1Australian Research Council Training Centre for Innovative Wine Production and Department of Wine Science, The University of Adelaide, and Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, PMB 1, Glen Osmond SA 5064, Australia
2Wynns Coonawarra Estate

Contact the author

Keywords

3-isobutyl-2-methoxypyrazine, 3-isopropyl-2-methoxypyrazine, vigour, rootstock, geographical indication

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Volatile organic compounds investigation in Müller Thurgau wines obtained from vineyard treated with biochar

Volatile Organic Compounds (VOCs) are responsible for the flavor and aroma of a wine. The sensory qualities of the wines depend not only on grape intrinsic characteristics, but also on extrinsic factors including the soil composition. Previous studies have shown that the application of pyrogenic carbon (biochar) can lead to a change in soil parameters. For that reason, one of the goals of the ERDF funded project «WoodUp» is the characterization and reutilization of the locally produced biochar for agricultural purposes.

Potentiel des sols viticoles et qualité des vins

La qualité des vins dépend de différents facteurs et procédés, notamment de la nature des terrains viticoles. Dans ce travail, nous avons cherché à établir les liens entre descripteurs pédologiques des parcelles et descripteurs sensoriels des vins. Sur la base de Classifications Ascendantes Hiérarchiques (CAH) et d’Analyses en Composante Principale (ACP), il a été possible d’établir des liens entre la nature des parcelles (sableuse, argileuse, sablo-graveuleuse) et certains descripteurs sensoriels des vins (chaleur, astringence, fruit noir) et plus globalement avec le type de vins élaborés.

Variety “Rebula” (Vitis vinifera L.) determines the terroir Goriška brda “Collio” in Slovenia

A «terroir» is a group of vineyards from the same region, belonging to a specific appellation, and sharing the same type of soil, weather conditions, grapes and wine making savoir-faire, which contribute its specific personality to the wine. White wine variety «Rebula» or «Ribolla gialla» is a local and traditional variety, which is mentioned already in XIII. century like variety for tax paying and merchandise.

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

Characterization of vine vigor by ground based NDVI measurements

Many farming operations aim at controlling the leaf area of the vine according to its load. There are several techniques, direct and indirect, of estimate of this leaf area in a specific way, but impossible to implement at great scales. These last years, research in airborne and satellite remote sensing made it possible to show that a multispectral index of vegetation, computed from measurements of reflectances (red and near infrared), the « Normalised Difference Vegetation Index » (NDVI), is well correlated to the « Leaf Area Index » (leaf area per unit of ground) of the vine. Nevertheless these methods of acquisition and processing data are rather constraining and complex.