IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory profiles and European Consumer Preference related to Aroma and Phenolic Composition of Wines made from Fungus Resistant Grape Varieties

Sensory profiles and European Consumer Preference related to Aroma and Phenolic Composition of Wines made from Fungus Resistant Grape Varieties

Abstract

New grape varieties with several resistance loci towards powdery and downy mildew allows to significantly reduce the use of fungicides. These fungus resistant grape varieties (PIWI from the German Pilzwiderstandsfähig) play a crucial role to reach the goal to lower pesticide use by 50% as requested by the European Green Deal for 2030. However, wine growers are reluctant to plant them due to a lack of experience in vinification and uncertainty how consumer perceive and purchase wines of these completely unknown varieties.
The objective of this study within the VITIFIT research consortium was to vinify different wine styles in two vintages from grapes of four white and three red PIWI. Most of them came from the same experimental site, where four classic varieties were planted as well. We regressed data obtained by descriptive analysis with hedonic ratings from German, French, Italian, Danish and Dutch consumers. Several consumer segments appeared having different drivers of preference, however all consumers disliked sour, astringent and green wines with less fruit and color. Wine professionals scored the same wines and judged the wines very similar to the consumers: 9% of PIWI wines were rated significantly better, 9% significantly inferior and in 82%, no difference occurred.
To unravel the molecular base we analysed aroma compounds in a non-targeted way as well as by targeted analysis by SIDA-GC-MS or LC-MS for monoterpenes, C13-norisoprenoids and polyfunctional thiols. Analysis of phenolic compounds covered indirect measurements such as Folin-C or Harbertson-Adams-Assay as well as targeted analysis by LC-MS or LC-DAD. In case of the Muscaris (PIWI) versus Muskateller comparison Muscaris wines were richer in cis-roseoxide, while linalool and α-terpineol were higher in Muskateller wines. A sensory napping analysis however, could not distinguish wines of both varieties. So far, no specific off-flavors could be detected in the new PIWIs as they are reported for old hybrid varieties. Although fungus resistance may relate to increased polyphenols in the grape skin, red wines made from PIWI did not show higher concentrations in general across the different winemaking styles.
Overall, making wines from grapes from the same or very similar vineyards, PIWIs delivered from a sensory and hedonic point of view equivalent or even superior wines. Using different winemaking styles allow fulfilling specific and varying sensory demands of European consumers. Combining these findings with the elsewhere reported improved sustainability in growing PIWIs, should convince a rising number of conventional and organic vintners to plant more PIWIs in the near future.

References

sensory evaluation, fungus resistant grape varieties, consumer, aroma compounds, polyphenols

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Weber Marc1, Vestner Jochen1 and Fischer Ulrich1

1Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Carbaryl is an acetylcholine esterase inhibitor-type insecticide used for pest control on grapevine. We repeatedly observed the occurrence of interveinal leaf necrosis following carbaryl spray application in a Vitis rupestris x Vitis riparia F1 hybrid progeny vineyard. Spray applications induced necrosis in this progeny under both Missouri and New York field conditions an approximate one-to-one sensitive-to-insensitive segregation ratio and with 42% concordance. Results of subsequent in vitro experiments established causality between carbaryl treatment and leaf necrosis and confirmed the pattern of segregation observed in the field. We consistently map this phenotype to a major QTL on chromosome 16 of the female parent V. rupestris ‘B38’ regardless of whether we used field or in vitro-generated phenotype data.

Peptidomics in the wine industry: literature perspectives on functional importance and analytical methods

Winemaking is a globally significant industry in the field of food technology (218 mhL of wine estimated for 2024 harvest) [1], which activity produces tons of by-products annually, including pomace (pulp, stems, seeds, skins), lees, organic acids, CO2, and water [2].

Caracterización de las tierras de viña de Navarra

Este programa se enmarca dentro de las líneas de trabajo del Departamento de Agricultura, Ganadería y Alimentación del Gobiemo de Navarra y su objetivo general es conocer adecuadamente las