IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

Abstract

In 2020 one out of  eight wine bottles were filled with a flavoured wine-based beverage.
Installed sealings absorb aroma compounds and release them during subsequent bottling of regular wines. This unintentional carry-over bears the risk to violate the legal ban of any
aromatization of regular wine.  Due to the highly seasonal bottling of aromatized wine-based beverages such as mulled wine, an installation of a second bottling line  reserved for aromatized beverages only is too expensive. Thus we investigated the absorption and desorption process during bottling and cleaning in order to minimize aroma carry-over by improved cleaning efficacy.  If cleaning obeys good manufacturing practice (GMP) and traces of aroma compounds in the subsequently filled wine show no sensory significance, this unintended aroma carry-over will be considered as technically unavoidable and has no legal consequences anymore. Based on a novel direct analysis of aroma compounds within the sealing polymers, which we exposed to aromatized wine and cleaning agents in a model
system, a GMP cleaning sequence removed only 11–62% of the seven absorbed marker
aroma compounds such as γ-decalactone, α-ionon or eugenol.1 Among the cleaning factors, high temperature of 85 °C revealed the largest cleaning efficacy, while chemical additives such as citric acid, caustic soda or ozone exhibited only minor impact. A total removal of absorbed aroma compounds from sealing however was not achieved, making a later release into subsequent wines possible. To study the requested absence of sensory significance, odor detection thresholds of seven aroma compounds commonly used for aromatization were determined in water, model wine and regular white wine. Applying the odor activity concept to traces of aroma compounds detected in the subsequent bottled wines allowed us to determine unequivocally their sensory impact. 

Studying uptake, cleaning and further release in two industry scale bottling lines we could confirm the uptake of marker compounds into built-in sealing during the filling of mulled or aromatized wines for four days. GMP cleaning only reduced small amounts of absorbed aroma compounds from the sealing, which was also the case for the subsequent bottling of regular wines. Sensory evaluation of the wine before and after bottling by a 2-out-of-5 test could not detect the bottled wine. In fact, concentrations of respective aroma compounds remained below the analytical limit of detection or way below their respective sensory
thresholds. In conclusion, despite of migration of aroma compounds into the sealing of a bottling line, execution of GMP cleaning and dilution effects in the subsequently filled wine prevented any aroma carry-over of sensory significance. Thus, a potential analytical determination of aroma traces would not lead to legal prosecution.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gottmann Jörg1, Vestner Jochen1 and Fischer Ulrich1

1Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

aroma carry-over, odor detection threshold, odor activity value, cleaning, aromatized wines, sensory evaluation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Raman spectroscopy as a rapid method to assess grape polyphenolic maturation and wine malolactic fermentation on site

Wineries can increase their economic and environmental sustainability by optimizing the winemaking procedures, from harvest to wine maturation and conservation. Based on analytical data of the chemical composition and wine sensory evaluation, the enologist makes his own decision regarding the enological interventions at the harvest date selection, winemaking and post-winemaking.

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Kinetic investigations of the sulfite addition on flavanols

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2].

How the physical components of the terroir can differently intervene in French wines DPO definitions.Example of Côte de Nuits in Burgundy

European regulations describe what elements must be given in the specifications of DPO determination ; mainly production conditions, links between quality and products characteristics and the physical traits of the production area. These elements are given in the “link to terroir” paragraph relating natural and human factors, detailed product characteristics linked to the geographical area and at last interactions between product originality and the geographical area.