IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

Abstract

In 2020 one out of  eight wine bottles were filled with a flavoured wine-based beverage.
Installed sealings absorb aroma compounds and release them during subsequent bottling of regular wines. This unintentional carry-over bears the risk to violate the legal ban of any
aromatization of regular wine.  Due to the highly seasonal bottling of aromatized wine-based beverages such as mulled wine, an installation of a second bottling line  reserved for aromatized beverages only is too expensive. Thus we investigated the absorption and desorption process during bottling and cleaning in order to minimize aroma carry-over by improved cleaning efficacy.  If cleaning obeys good manufacturing practice (GMP) and traces of aroma compounds in the subsequently filled wine show no sensory significance, this unintended aroma carry-over will be considered as technically unavoidable and has no legal consequences anymore. Based on a novel direct analysis of aroma compounds within the sealing polymers, which we exposed to aromatized wine and cleaning agents in a model
system, a GMP cleaning sequence removed only 11–62% of the seven absorbed marker
aroma compounds such as γ-decalactone, α-ionon or eugenol.1 Among the cleaning factors, high temperature of 85 °C revealed the largest cleaning efficacy, while chemical additives such as citric acid, caustic soda or ozone exhibited only minor impact. A total removal of absorbed aroma compounds from sealing however was not achieved, making a later release into subsequent wines possible. To study the requested absence of sensory significance, odor detection thresholds of seven aroma compounds commonly used for aromatization were determined in water, model wine and regular white wine. Applying the odor activity concept to traces of aroma compounds detected in the subsequent bottled wines allowed us to determine unequivocally their sensory impact. 

Studying uptake, cleaning and further release in two industry scale bottling lines we could confirm the uptake of marker compounds into built-in sealing during the filling of mulled or aromatized wines for four days. GMP cleaning only reduced small amounts of absorbed aroma compounds from the sealing, which was also the case for the subsequent bottling of regular wines. Sensory evaluation of the wine before and after bottling by a 2-out-of-5 test could not detect the bottled wine. In fact, concentrations of respective aroma compounds remained below the analytical limit of detection or way below their respective sensory
thresholds. In conclusion, despite of migration of aroma compounds into the sealing of a bottling line, execution of GMP cleaning and dilution effects in the subsequently filled wine prevented any aroma carry-over of sensory significance. Thus, a potential analytical determination of aroma traces would not lead to legal prosecution.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gottmann Jörg1, Vestner Jochen1 and Fischer Ulrich1

1Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

aroma carry-over, odor detection threshold, odor activity value, cleaning, aromatized wines, sensory evaluation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Sustainability and resilience in the wine sector

Resilience and sustainability are two fundamental concepts in the sustainable development of the wine sector, being closely interconnected.

Biological control of the vineyard: new microbiological findings from CREA-VE

According to the Food and Agriculture Organisation (FAO), 75.866 km2 of the world is dedicated to grape cultivation. About 71.0% of the world’s grape production is destined for winemaking, 27.0% for consumption as fresh fruit and 2.0% as raisin. Grape production is mainly hindered by fungal infections, that can develop both in field and post-harvest.

Effect of interspecific yeast hybrids for secondary in-bottle alcoholic fermentation of english sparkling wines

In sparkling winemaking several yeasts can be used to perform the primary alcoholic fermentation that leads to the elaboration of the base wine. However, only a few Saccharomyces cerevisiae yeast strains are regularly used for the secondary in-bottle alcoholic fermentation 1. Recently, advances in yeast development programs have resulted in new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavours and aromas 2. In this work, sparkling wines produced using interspecific yeast hybrids for the secondary in-bottle alcoholic fermentation have been chemically and sensorially characterized.METHODS: Three commercial English base wines have been prepared for secondary in-bottle alcoholic fermentation with different yeast strains, including two commercial and several novel interspecific hybrids derived from Saccharomyces species not traditionally used in sparkling winemaking. After 12 months of lees ageing, the 14 wines produced were analysed for their chemical and macromolecular composition 3,4, phenolic profile 5, foaming and viscosity properties [6]. The analytical data were supplemented with a sensory analysis.

Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

During Champagne or sparkling wine tasting, gas-phase CO2 and volatile organic compounds invade the headspace above glasses [1], thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception [2]. Monitoring as accurately as possible the level of gas-phase CO2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO2 and a collection of various tasting parameters.

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.