Terroir 2016 banner
IVES 9 IVES Conference Series 9 Climate change and economic challenge – strategies for vinegrowers, winemakers and wine estates

Climate change and economic challenge – strategies for vinegrowers, winemakers and wine estates

Abstract

For wine areas around the world, nature and climate are becoming factors of production whose endowment becomes a stake beyond the traditional economic factors: labor, capital, land. They strongly influence agricultural and environmental conditions for production. With global warming new production areas are suitable for cultivation of vines with new people embarking on viticulture, preventive relocations are underway as well as land purchases which are anticipated future potential, cultivation practices evolve… A shift towards the poles (north and south) begins to be observed.

The people in charge of wine estates (winemakers, owners, managers,…) have to adjust continually to the impacts of climate change, a key and permanent concern today. In the vineyard as in the winery or in cellars adaptation is unceasing. Moreover, important observations of temporal and spatial variability of climate require unending monitoring in the vineyard, operations vital and costly in time. Simultaneously a strong spatial variability of climate on tight spaces requires responsiveness of winemakers in their plots because of high differences caused by local conditions (topography, soil, subsoil …) both in the short and medium term.

For wineries individual adjustment strategies, although still implemented through the centuries have become essential or crucial to the future of the working tool. The wide variety of situations (climatic, geographical, economic …) require new decisions to protect properties from incidents and accidents; the consequences of climate may jeopardize the survival of the wine estates especially the small ones (coverage risks, geographic diversification …). An individual or collective supervision is required to avoid uprooting of vines followed by losses and shortfalls in earnings over several years. Some recent situations are given as examples; they essentially concern familial estates in Burgundy from the vineyard to the choice of the type of produced wines.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Marie-Claude PICHERY

Laboratoire d’Economie de Dijon (LEDi), Pôle d’Economie et Gestion, BP 26611, F 21066 DIJON Cedex, France

Contact the author

Keywords

climate change, grape, strategies, vignerons, vines, wine, winemakers

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

The vineyard of the future: producing more with less  

similar to other agricultural producers, grape growers face increasing pressure to improve productivity and production efficiency while reducing their environmental impact. Threats due to extreme climate events, as well as the uncertainty of available water and labor, provide significant challenges to the future of grape production. This presentation will provide an integrated overview of the tools and technologies being developed to address these issues and to help growers manage vineyards in the future, including vineyard design, remote and proximal sensing, automation, data management and decision support systems, and germplsm improvement. The potential impact of these advancements on vineyard productivity, fruit quality, and sustainability will be discussed.

Multidisciplinary assessment of selective harvesting in the Colli Piacentini wine district

Within-field variability can be managed through Precision Viticulture (PV) protocols aiming at identifying homogeneous zones and addressing site-specific operations including selective harvesting (SH). Several authors demonstrated SH profitability in extensive viticulture while few information is available within the Italian context.

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

Phytochemical composition of Artemisia absinthium L.

Absinthe is historically described as a distilled, highly alcoholic beverage. It is an anise-flavoured spirit derived from botanicals, including the flowers and leaves of Artemisia absinthium L. (“grand wormwood”), together with green anise, sweet fennel, and other medicinal and culinary herbs.

Prediction of astringency in red wine using tribology approach to study in-mouth perception

AIM Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.