IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of alcoholic strength on the phenolic and furfural compounds of Brandy de Jerez aged in Sherry Casks®

Effect of alcoholic strength on the phenolic and furfural compounds of Brandy de Jerez aged in Sherry Casks®

Abstract

Brandy is a spirit drink produced from wine spirit aged for at least six months in oak casks with a capacity of less than 1000 L and minimum alcohol by volume (ABV) of 36%. During the aging process, physicochemical and sensory changes take place. Manifested by colour, flavour or aroma variations that improve the quality of the initial distillate. Influenced by several factors related with aging process itself and the characteristics of casks: botanical origin, volume, toasting degree, previous usage and pre-treatments, like the wine-seasoning process.Casks that have previously contained a Sherry wine (Fino, Oloroso, etc) gives rise to the so-called Sherry Cask®. The characteristics of Sherry Casks depends on the Sherry wine previously contained. They contribute during brandy aging with compounds from the wood, as well as with those from the wine that were retained in the wood’s pores. Potential extraction of these compounds is influenced by alcoholic strength. Traditionally, distillates are aged at between 50-70% ABV, although in some wineries at the alcoholic strength for consumption. Moreover, alcoholic strength has a direct impact on the logistics of the winery. An aging process with distillates of a higher alcoholic strength allows to obtain a greater volume of the final product (36% ABV) with less barrels required for the process. Barrels represent an immobilised asset for the wineries that has a direct impact on the production costs. Due to its importance, this work aims to study the influence of alcoholic strength on the composition of phenolic compounds in brandies aged for 12 months in Sherry Cask.Methods: A distillate at 77% ABV was hydrated with demineralised water to reach the different alcoholic strengths to be tested: 40%, 55% and 68% ABV. Brandies were aged in American oak (Quercus alba) casks, medium toast, with a capacity of 500 L and seasoned by 18% ABV Oloroso Sherry wine for 3 years. Distillates and Sherry Casks were supplied by Bodegas Fundador SLU, belonging to GI of Brandy de Jerez. Each test was carried out in duplicate, two barrels for each alcoholic strength, following a static aging process and samples were taken periodically to follow their evolution, showing in this study results up 12 months. The phenolic and furfural compounds were quantified by UHPLC. The results are expressed in mg/L 100% vol. alcohol in order to the different alcoholic strengths could be compared. Results: Brandies aged with lower alcoholic strength lead to a greater accumulation of phenolic compounds. In general, between 40 and 55% ABV there are no differences, while at 68% ABV lower values are obtained. This difference is more marked in phenolic acids (Gallic, Ellagic, Syringic and Vanillic acids) and furanic aldehydes (Furfural, 5-methylfurfural, 5-HMF) than in phenolic aldehydes (Vanillin, Syringaldehyde, Coniferaldehyde, Sinapaldehyde). For phenolics from wine-seasoning higher values was found for 40% ABV (Caffeic and Coumaric acids).

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Butrón Benítez Daniel1, Valcárcel-Muñoz Manuel J.2, García-Moreno M. Valme1, Guerrero-Chanivet María1,2 and Guillén-Sánchez Dominico A.1

1Department of Analytical Chemistry, Faculty of Science, IVAGRO. University of Cádiz.
2Bodegas Fundador S.L.U.

Contact the author

Keywords

Brandy, alcoholic strengths, ageing, phenolics, Sherry Cask

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.

Consumo hídrico de la vid, c.v. Listán negro, en la comarca de Tacoronte-Acentejo. Tenerife

Durante el bienio 1998-1999 se estudió el uso consuntivo de cultivos de viña var. Listán negro, en cuatro fincas situadas en la Comarca de Tacoronte-Acentejo, en la isla de Tenerife.

Come proteggere un territorio viticolo: il punto di vista del giurista

La valanga di fango che si è abbattuta nel Salemitano e nell’Avellinese, provocando decine di vittime, è stata causata in larga misura dalle insufficienti opere idrauliche e dalla manca­ta manutenzione di antiquati canali idrici.

TCA – A status report on South African cork closures

Cork taint decreases the commercial value of wine as tainted wines are rejected by consumers. Although other compounds in wine and cork can also be responsible for causing a taint, 2,4,6-trichloroanisole (TCA) is regarded as the primary cause of cork taint. As cork taint is often used in marketing campaigns against natural cork closures,

Cumulative effects of repeated drought stress on berry composition, and phenolic profile: Field experiment insights

Drought stress has a profound impact on grapevine productivity and significantly alters key quality-related traits of berries. Although research has been conducted on the effects of individual drought events, there is still a knowledge gap regarding the cumulative consequences of repeated exposure to water scarcity and the influence of the timing of stress imposition. To address this gap, a field experiment was conducted to investigate the impacts of repeated drought stress on yield, berry composition, and the phenolic profile of grape berries. The results indicate that yield is primarily influenced by pre-veraison water deficit. Although the number of clusters was only slightly reduced, a substantial decrease in berry size was observed, resulting in a notable reduction in overall yield.