IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of alcoholic strength on the phenolic and furfural compounds of Brandy de Jerez aged in Sherry Casks®

Effect of alcoholic strength on the phenolic and furfural compounds of Brandy de Jerez aged in Sherry Casks®

Abstract

Brandy is a spirit drink produced from wine spirit aged for at least six months in oak casks with a capacity of less than 1000 L and minimum alcohol by volume (ABV) of 36%. During the aging process, physicochemical and sensory changes take place. Manifested by colour, flavour or aroma variations that improve the quality of the initial distillate. Influenced by several factors related with aging process itself and the characteristics of casks: botanical origin, volume, toasting degree, previous usage and pre-treatments, like the wine-seasoning process.Casks that have previously contained a Sherry wine (Fino, Oloroso, etc) gives rise to the so-called Sherry Cask®. The characteristics of Sherry Casks depends on the Sherry wine previously contained. They contribute during brandy aging with compounds from the wood, as well as with those from the wine that were retained in the wood’s pores. Potential extraction of these compounds is influenced by alcoholic strength. Traditionally, distillates are aged at between 50-70% ABV, although in some wineries at the alcoholic strength for consumption. Moreover, alcoholic strength has a direct impact on the logistics of the winery. An aging process with distillates of a higher alcoholic strength allows to obtain a greater volume of the final product (36% ABV) with less barrels required for the process. Barrels represent an immobilised asset for the wineries that has a direct impact on the production costs. Due to its importance, this work aims to study the influence of alcoholic strength on the composition of phenolic compounds in brandies aged for 12 months in Sherry Cask.Methods: A distillate at 77% ABV was hydrated with demineralised water to reach the different alcoholic strengths to be tested: 40%, 55% and 68% ABV. Brandies were aged in American oak (Quercus alba) casks, medium toast, with a capacity of 500 L and seasoned by 18% ABV Oloroso Sherry wine for 3 years. Distillates and Sherry Casks were supplied by Bodegas Fundador SLU, belonging to GI of Brandy de Jerez. Each test was carried out in duplicate, two barrels for each alcoholic strength, following a static aging process and samples were taken periodically to follow their evolution, showing in this study results up 12 months. The phenolic and furfural compounds were quantified by UHPLC. The results are expressed in mg/L 100% vol. alcohol in order to the different alcoholic strengths could be compared. Results: Brandies aged with lower alcoholic strength lead to a greater accumulation of phenolic compounds. In general, between 40 and 55% ABV there are no differences, while at 68% ABV lower values are obtained. This difference is more marked in phenolic acids (Gallic, Ellagic, Syringic and Vanillic acids) and furanic aldehydes (Furfural, 5-methylfurfural, 5-HMF) than in phenolic aldehydes (Vanillin, Syringaldehyde, Coniferaldehyde, Sinapaldehyde). For phenolics from wine-seasoning higher values was found for 40% ABV (Caffeic and Coumaric acids).

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Butrón Benítez Daniel1, Valcárcel-Muñoz Manuel J.2, García-Moreno M. Valme1, Guerrero-Chanivet María1,2 and Guillén-Sánchez Dominico A.1

1Department of Analytical Chemistry, Faculty of Science, IVAGRO. University of Cádiz.
2Bodegas Fundador S.L.U.

Contact the author

Keywords

Brandy, alcoholic strengths, ageing, phenolics, Sherry Cask

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

The work was aimed at comparing some analytical methods used to characterize oenological tannins and the measure of oxygen consumption rate (OCR), in order to provide oenologists with a rapid method to test the antioxidant capacity of tannin based products and a tool to choose the best suited product for each purpose.

Comparing vineyard irrigation management based in two different approaches: vegetation indices and SIMDualKc model

Water scarcity, high air temperatures, high vapor pressure deficit, and increasing frequency and intensity of extreme climatic events, namely heat waves, exert huge pressure on viticulture, as is the case of Mediterranean climates. Therefore, farmers rely more and more on irrigation to overcome these constraints. Deficit irrigation is a proved strategy to optimize irrigation efficiency and wine quality. The present study intends to demonstrate the application of precision techniques, namely remote sensing derived vegetation indices (VI) and an open source software, SIMDualKc, to compute crop evapotranspiration using the dual crop coefficient approach (Kcb + Ke), for deficit irrigation management.

Evaluation of winegrape anthocyanins in the vineyard using a portable fluorimetric sensor: seasonal and water regime effects

Accumulation of anthocyanins (Anth) on whole winegrape (Vitis vinifera L.) bunches attached to the vine was monitored by a fluorescence-based sensor (Multiplex) on ‘Aleatico’ and ‘Nero d’Avola’. Different water regimes were applied.

Redwine project: increasing microalgae biomass feedstock by valorising wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern.

Impact of crop load management on terpene content in gewürztraminer grapes

Context and purpose of the study ‐ Crop load management by cluster thinning can improve ripening and the concentration of key metabolites for grape and wine quality. However, little work has been done on testing the impact of crop load management on terpene content of white grapes. The goal of the study was to assess if by reducing crop load via cluster thinning growers can increase terpene concentration of grapes, as well as to test if the timing of thinning application affects terpene concentration.