IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Volatile analysis of Botrytis contaminated grapes using headspace solid phase microextraction GC-MS

Abstract

Grapes infected with grey mould due Botrytis cinerea are widespread in vineyards during certain growing conditions.  Excessive infection levels may lead to decreased yields and the formation of off flavours in wine made from infected grapes. To assist in timely vineyard management that minimises yield and quality losses, decision support tools that correlate early detection of Botrytis infection and quantification of potential off flavour development is desirable.In this study, laboratory infection of whole bunches/ single berries with Botrytis cinerea to create a range of grey mould contamination in Shiraz, Cabernet Sauvignon, Chardonnay and Semillon were undertaken. After SPME GC-MS detection of grape homogenate, 8 out of 22 volatile compounds, including 3-octanol, 3-octanone, 1,5-dimethylnapthalene and 1,5-dimethyltetralin, were identified from VIP score and selectivity ratio, and excellent predictive model of Botrytis cinerea infection levels (determined by ergosterol measurement, antigen capture and qPCR) were developed using PLS and PLS2. These compounds, with high predictive accuracy, could be considered as potential biomarkers for rapid MS techniques in early stage.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Jiang Liang1, Qiu Y.1,2, Dumlao M.1,2,3, Donald W. A.4, Steel C. C.1,2 and Schmidtke L. M.1,2,3

1School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University
2Gulbali Institute (Agriculture Water Environment), Charles Sturt University
3The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide

4School of Chemistry, Faculty of Science, University of New South Wales

Contact the author

Keywords

Grape disease, Grey mould, Botrytis cinerea, SPME GC-MS, Volatile organic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The environmental impact of viticulture: analysis of the influence type of biofertilisers on wine quality and microbiology activity of soil

The trial was conducted in variety/rootstock Riesling/Kober 5 BB in the vineyard district of Vrsac. The vineyard was planted in 1996 on a south-facing slope, with rectangular type pruning of 3×1 m. The training system is of symmetric cordon type and mixed type pruning is practiced.

Effects of rootstock and environment on the behaviour of autochthone grapevine varieties in the Douro region

In an experiment located at Quinta da Cavadinha, Sabrosa, Douro Region the behaviour of the varieties Touriga Nacional (TN), Tinta Barroca (TB), Touriga Franca

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

EVIDENCE OF THE INTERACTION OF ULTRASOUND AND ASPERGILLOPEPSINS I ON UNSTABLE GRAPE PROTEINS

Most of the effects of ultrasound (US) result from the collapse of bubbles due to cavitation. The shockwave produced is associated with shear forces, along with high localised temperatures and pressures. However, the high-speed stream, radical species formation, and heat generated during sonication may also affect the stability of some enzymes and proteins, depending on their chemical structure. Recently, Ce-lotti et al. (2021) reported the effects of US on protein stability in wines. To investigate this further, the effect of temperature (40°C and 70°C; 60s), sonication (20 kHz and 100 % amplitude, for 20s and 60s, leading to the same temperatures as above, respectively), in combination with Aspergillopepsins I (AP-I) supplementation (100 μg/L), was studied on unstable protein concentration (TLPs and chitinases) using HPLC with an UV–Vis detector in a TLPs-supplemented model system and in an unstable white wine.

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining.