IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 A first look at the aromatic profile of “Monferace” wines

A first look at the aromatic profile of “Monferace” wines

Abstract

Grignolino, is a native Piedmont grape variety which well represents the historical and
enological identity of Monferrato, a territory between Asti and Casale Monferrato, included in the World Heritage List designated by UNESCO (1). Numerous documents trace its cultivation back to the early Middle Age. Until the mid-1900s Grignolino was considered a fine wine valued as much as Barolo and Barbaresco for its quality, finesse, and unique characteristics (2). Today the young and “easy” version of this wine is the best known and appreciated for a pale ruby red color with tints that rapidly tend to orange, high acidity, with distinct tannins. However, some local wine producers, the Monferace association, in order to revive the ancient glories of Grignolino, have decided to produce an aged version of this wine. For this purpose, they have drawn up production guidelines that require at least 40 months of ageing, 24 of which in oak barrels.
In order to characterize Monferace, for the first time, from an aromatic point of view, 2012 (four years of ageing) and 2015 (two years of ageing) wines were analyzed. Their aromatic composition was evaluated using SPE-GC-MS methods and sensory analysis (3). The most important volatile compounds identified in these wines belong to the class of lactones, hydroxybenzaldehydes, phenols, short and medium chain fatty acids and their ethyl esters. Moreover, traces of some isoprenoid compounds were detected. Results highlighted a composite and rich aromatic profile, typical of wines characterized by great structure and complexity. From an olfactory point of view Monferace differs significantly from the more
widespread, and not aged, Grignolino wines. The former shows important notes of wood, boisée, floral, cherry, berries, caramel and spice, the latter is characterized by notes of violet, rose, raspberry, pepper, currant, cherry, resinous and vegetable. Statistical analysis showed a good correlation between the main olfactory descriptors identified in the wines and key aroma compounds measured in the same samples.

References

1) UNESCO World Heritage Centre. Vineyard Landscape of Piedmont: Langhe-Roero and Monferrato. Available at https://whc.unesco.org/en/list/1390/
2) Desana, P. Barbesino and Grignolino wines in the grape-wine history of Monferrato. Studying 12th century documents. 1980, Vignevini. 7(12) p. 15-17.
3) Petrozziello, M., Bonello, F., Asproudi, A., Nardi, T., Tsolakis, C., Bosso, A., Martino, V. D., Fugaro, M., & Mazzei, R. A. (2020). Differences in xylovolatiles composition between chips or barrel aged wines: OENO One, 54(3), 513–522. https://doi.org/10.20870/oeno-one.2020.54.3.2923

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Petrozziello Maurizio1, Asproudi Andriani1, Bonello Frederica1, Cravero Maria Carla1, Gianotti Silvia2 and Ronco Mario2

1CREA, Research Centre for Viticulture and Enology
2Associazione Monferace, Castello di Ponzano Monferrato

Contact the author

Keywords

Grignolino, wood ageing, aromatic compounds, GC-MS, sensory analysis.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

Extraction of anthocyanins and tannins have been studied for two grape varieties, Carignan and Grenache, two maturation levels and two vintages, in model solutions and in wines, using UHPLC-MS/MS in the MRM mode  and HPSEC.

Adjustments of water use efficiency by stomatal regulation during drought and recovery of Verona province grape varieties grafted on two different vitis hybrid rootstocks

Drought is considered to be the predominant factor both for determining the geographic distribution of vegetation and for restricting crop yields in agriculture. Furthermore

Characterization of varieties named ‘Caiño’ cultivated from Northwest of Spain

The ‘Caiño’ cultivar was cultivated in Galicia (Northwestern Spain) before the invasion of grape phylloxera. Genetic diversity from this cultivar have been described and considered as originating in Galicia, ‘Caiño Tinto’, ‘Caiño Bravo’, ‘Caiño Redondo’, ‘Caiño Longo’ and ‘Caiño Blanco’.

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

La Région Piemonte a commencé en 1994 un projet de caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie) par une équipe pluridisciplinaire avec la participation de 6 Instituts de recherche qui travaillent dans la Région et la collaboration de 2 Associations des producteurs viticoles et des organismes de valorisation du vin Barolo.

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.