IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 A first look at the aromatic profile of “Monferace” wines

A first look at the aromatic profile of “Monferace” wines

Abstract

Grignolino, is a native Piedmont grape variety which well represents the historical and
enological identity of Monferrato, a territory between Asti and Casale Monferrato, included in the World Heritage List designated by UNESCO (1). Numerous documents trace its cultivation back to the early Middle Age. Until the mid-1900s Grignolino was considered a fine wine valued as much as Barolo and Barbaresco for its quality, finesse, and unique characteristics (2). Today the young and “easy” version of this wine is the best known and appreciated for a pale ruby red color with tints that rapidly tend to orange, high acidity, with distinct tannins. However, some local wine producers, the Monferace association, in order to revive the ancient glories of Grignolino, have decided to produce an aged version of this wine. For this purpose, they have drawn up production guidelines that require at least 40 months of ageing, 24 of which in oak barrels.
In order to characterize Monferace, for the first time, from an aromatic point of view, 2012 (four years of ageing) and 2015 (two years of ageing) wines were analyzed. Their aromatic composition was evaluated using SPE-GC-MS methods and sensory analysis (3). The most important volatile compounds identified in these wines belong to the class of lactones, hydroxybenzaldehydes, phenols, short and medium chain fatty acids and their ethyl esters. Moreover, traces of some isoprenoid compounds were detected. Results highlighted a composite and rich aromatic profile, typical of wines characterized by great structure and complexity. From an olfactory point of view Monferace differs significantly from the more
widespread, and not aged, Grignolino wines. The former shows important notes of wood, boisée, floral, cherry, berries, caramel and spice, the latter is characterized by notes of violet, rose, raspberry, pepper, currant, cherry, resinous and vegetable. Statistical analysis showed a good correlation between the main olfactory descriptors identified in the wines and key aroma compounds measured in the same samples.

References

1) UNESCO World Heritage Centre. Vineyard Landscape of Piedmont: Langhe-Roero and Monferrato. Available at https://whc.unesco.org/en/list/1390/
2) Desana, P. Barbesino and Grignolino wines in the grape-wine history of Monferrato. Studying 12th century documents. 1980, Vignevini. 7(12) p. 15-17.
3) Petrozziello, M., Bonello, F., Asproudi, A., Nardi, T., Tsolakis, C., Bosso, A., Martino, V. D., Fugaro, M., & Mazzei, R. A. (2020). Differences in xylovolatiles composition between chips or barrel aged wines: OENO One, 54(3), 513–522. https://doi.org/10.20870/oeno-one.2020.54.3.2923

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Petrozziello Maurizio1, Asproudi Andriani1, Bonello Frederica1, Cravero Maria Carla1, Gianotti Silvia2 and Ronco Mario2

1CREA, Research Centre for Viticulture and Enology
2Associazione Monferace, Castello di Ponzano Monferrato

Contact the author

Keywords

Grignolino, wood ageing, aromatic compounds, GC-MS, sensory analysis.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

20-Year-Old data set: scion x rootstock x climate, relationships. Effects on phenology and sugar dynamics

Global warming is one of the biggest environmental, social, and economic threats. In the Douro Valley, change to the climate are expected in the coming years, namely an increase in average temperature and a decrease in annual precipitation. Since vine cultivation is extremely vulnerable and influenced by the climate, these changes are likely to have negative effects on the production and quality of wine.
Adaptation is a major challenge facing the viticulture sector where the choice of plant material plays an important role, particularly the rootstock as it is a driver for adaptation with a wide range of effects, the most important being phylloxera, nematode and salt, tolerance to drought and a complex set of interactions in the grafted plant.
In an experimental vineyard, established in the Douro Region in 1997, with four randomized blocs, with five varieties, Touriga Nacional, Tinta Barroca, Touriga Franca and Tinta Roriz, grafted in four rootstocks, Rupestris du Lot, R110, 196-17C, R99 and 1103P, data was collected consecutively over 20 years (2001-2020). Phenological observations were made two to three times a week, following established criteria, to determine the average dates of budbreak, flowering and veraison. During maturation, weekly berry samples were taken to study the dynamics of sugar accumulation, amongst other parameters. Climate data was collected from a weather station located near the vineyard parcel, with data classified through several climatic indices.
The results achieved show a very low coefficient of variations in the average date of the phenophases and an important contribution from the rootstock in the dynamic of the phenology, allowing a delay in the cycle of up to10-12 days for the different combinations. The Principal Component Analysis performed, evaluating trends in the physical-chemical parameters, highlighted the effect of the climate and rootstock on fruit quality by grape varieties.

“Terroir” and climate change in Franconia / Germany

Franconia which is a “cool climate” winegrowing region is well known for its fruity white wines. The most common grape cultivars are Silvaner and Mueller-Thurgau.

Egg allergens in wine. Validation of a new automated method for ovalbumin quantification

Ovalbumin (ova), a natural clarifying protein, is particularly suitable for clarifying red wines. It helps improve the tannic and polyphenolic stability of the wine by removing the most astringent tannins and contributing to soften and refine the structure. Ova binds to suspended particles, proteins, polysaccharides, and, to a lesser extent, tannins through electrostatic and hydrophobic interactions, forming large complexes that can be removed from the wine through fining and/or filtration before bottling.

Detection of spider mite using artificial intelligence in digital viticulture

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions. 

Spiders in vineyards show varying effects of inter-row management and the surrounding landscape

In vineyards, management and the surrounding landscape can have different effects on spiders. In temperate regions management (organic vs. conventional) may have less strong effects than for other crops.