IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 A first look at the aromatic profile of “Monferace” wines

A first look at the aromatic profile of “Monferace” wines

Abstract

Grignolino, is a native Piedmont grape variety which well represents the historical and
enological identity of Monferrato, a territory between Asti and Casale Monferrato, included in the World Heritage List designated by UNESCO (1). Numerous documents trace its cultivation back to the early Middle Age. Until the mid-1900s Grignolino was considered a fine wine valued as much as Barolo and Barbaresco for its quality, finesse, and unique characteristics (2). Today the young and “easy” version of this wine is the best known and appreciated for a pale ruby red color with tints that rapidly tend to orange, high acidity, with distinct tannins. However, some local wine producers, the Monferace association, in order to revive the ancient glories of Grignolino, have decided to produce an aged version of this wine. For this purpose, they have drawn up production guidelines that require at least 40 months of ageing, 24 of which in oak barrels.
In order to characterize Monferace, for the first time, from an aromatic point of view, 2012 (four years of ageing) and 2015 (two years of ageing) wines were analyzed. Their aromatic composition was evaluated using SPE-GC-MS methods and sensory analysis (3). The most important volatile compounds identified in these wines belong to the class of lactones, hydroxybenzaldehydes, phenols, short and medium chain fatty acids and their ethyl esters. Moreover, traces of some isoprenoid compounds were detected. Results highlighted a composite and rich aromatic profile, typical of wines characterized by great structure and complexity. From an olfactory point of view Monferace differs significantly from the more
widespread, and not aged, Grignolino wines. The former shows important notes of wood, boisée, floral, cherry, berries, caramel and spice, the latter is characterized by notes of violet, rose, raspberry, pepper, currant, cherry, resinous and vegetable. Statistical analysis showed a good correlation between the main olfactory descriptors identified in the wines and key aroma compounds measured in the same samples.

References

1) UNESCO World Heritage Centre. Vineyard Landscape of Piedmont: Langhe-Roero and Monferrato. Available at https://whc.unesco.org/en/list/1390/
2) Desana, P. Barbesino and Grignolino wines in the grape-wine history of Monferrato. Studying 12th century documents. 1980, Vignevini. 7(12) p. 15-17.
3) Petrozziello, M., Bonello, F., Asproudi, A., Nardi, T., Tsolakis, C., Bosso, A., Martino, V. D., Fugaro, M., & Mazzei, R. A. (2020). Differences in xylovolatiles composition between chips or barrel aged wines: OENO One, 54(3), 513–522. https://doi.org/10.20870/oeno-one.2020.54.3.2923

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Petrozziello Maurizio1, Asproudi Andriani1, Bonello Frederica1, Cravero Maria Carla1, Gianotti Silvia2 and Ronco Mario2

1CREA, Research Centre for Viticulture and Enology
2Associazione Monferace, Castello di Ponzano Monferrato

Contact the author

Keywords

Grignolino, wood ageing, aromatic compounds, GC-MS, sensory analysis.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The chemical composition of disease resistant hybrid grape cultivars and its impact on wine quality: an exploratory enquiry into sustainable wines

Disease resistant hybrid grape cultivars are now allowed in a number of EU wine PDOs, and are also accepted in a number of countries outside the EU. There is increasing interest in diseases resistant hybrid grape cultivars (RHGCs) because they allow for the production of healthy, high quality grapes with limited use of pesticides and the associated environmental and public health

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

Fractal analysis as a tool for delimiting guarantee of quality areas

The pioneering work of Mandelbrot in the 70’s for building the fractal theory lead rapidly to many interesting applications in different fields such as earth sciences and economy.

The role of rootstock and its genetic background in plant mineral status

In this video recording of the IVES science meeting 2025, Marine Morel (EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave-d’Ornon, France) speaks about the role of rootstock and its genetic background in plant mineral status. This presentation is based on an original article accessible for free on OENO One.

Exploring high throughput secondary trait phenomics to improve grapevine breeding

Modern grapevine breeding programs have overcome many challenges using genomic selection, which has allowed breeders to make targeted selections at earlier stages in the breeding process. However, the cost of genetic testing may present a burden for some programs, and markers often struggle to accurately predict quantitative traits. Recent advances in high throughput, high-dimensional data have provoked investigation into the use of high-dimensional phenomics as a low-cost addition to the grape breeder’s toolkit that may offer advantages in predicting quantitative traits. High-dimensional secondary trait (HDST) data has been employed in annual crops for prediction of agriculturally important traits such as yield.