IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

Abstract

Aceto balsamico di Modena IGP (ABM) is an Italian worldwide appreciated PGI (Protected Geographical Indication) vinegar,  obtained from cooked and/or concentrated grape must (at least 20% of the volume), with the addition of at least 10% of wine vinegar and a maximum 2% of caramel for color stability (EU Reg. 583/ 2009). The geographical origin of ABM ingredients is never specified.
Since 2013, the European Committee for Standardization (CEN) has issued a method for determining the water fraudulently added to the vinegar and the balsamic vinegar product (EN16466-3 18O-IRMS). The method is based on the stable isotope ratios analysis of the bulk AMB sample (expressed as δ18O in ‰ with respect to the international standard V-SMOW2).
Balsamic vinegars with very high density (higher than 1.37 g / mL of sugar) are available on the market. They are obtained by adding a high amount of concentrated must or by a long aging of the product in the barrel, which leads to an intense evaporation and concentration.
Products with such high density cannot be analyzed by using the official method as reported in the EN16466-3 18O-IRMS. Indeed, in this conditions, the equilibration between CO2 and the water in the sample, being the base principle of the process, does not occur.
In this work, the official method has been modified and validated, calculating repeatability (r) and reproducibility (R), by proceeding with a prior dilution of the sample and by applying a correction to the data in order to eliminate the diluent isotopic contribution. Considering the limit value of δ18O for a non-watered product reported in the literature for vinegar and for rectified concentrated must [1-2], the threshold limit of δ18O below which the ABM product can be considered as adulterated was identified.

References

[1] J. Agric. Food Chem. 2014, 62, 32, 8197–8203
[2] Food Control 2013, 29(1), 107–111

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Perini Matteo1, Pianezze Silvia1 and Paolini Mauro

1FONDAZIONE EDMUND MACH

Contact the author

Keywords

stable isotope analysis, balsamic vinegar, high density, watering down

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Classification of “Valpolicella Superiore” wines in relation to aromatic composition: influence of geographical origin, vintage and aging

The Valpolicella appellation, mainly known for Amarone and Ripasso, is experiencing growing interest in Valpolicella Superiore (VS), a lighter red wine aligning with consumer demand. However, anecdotal evidence suggests different stylistic interpretations of VS, potentially causing consumer confusion.

Observatoire du Grenache en Vallée du Rhône: incidence du terroir sur la diversité analytique et sensorielle des vins

Rhone Valley A.O.C. Vineyards cover more than 70 000 hectares, of wich more than 40 000 plantedwith Grenache N. The Grenache observatory was created in 1995.

Water deficit impacts grape development without dramatically changing thiol precursor levels

The use of new fungus disease-tolerant grapevine varieties is a long-term and promising solution to reduce chemical input in viticulture. However, little is known about the effects of water deficit (WD) on the thiol aromatic potential of new varieties coming up from breeding programs. Varietal thiols such as 3-sulfanylhexan-ol (3SH), 4-methyl-4-sulfanylpentan-2-one (4MSP) and their derivatives are powerful aromatic compounds present in wines coming from odorless precursors in grapes, and could contribute to the wine typicity of such varieties.

Sustainability and resilience in the wine sector

Resilience and sustainability are two fundamental concepts in the sustainable development of the wine sector, being closely interconnected.

Effectiveness of carboxymethyl cellulose (CMC) on tartaric stabilization of cava base wine

Recent EU regulations allow the use of carboxymethylcellulose (CMC) as a stabilization agent in wine. We tested CMC in bases for sparkling wines, which must be stabilized before the second fermentation that raises alcohol concentration by 1,5%.