IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

Abstract

Aceto balsamico di Modena IGP (ABM) is an Italian worldwide appreciated PGI (Protected Geographical Indication) vinegar,  obtained from cooked and/or concentrated grape must (at least 20% of the volume), with the addition of at least 10% of wine vinegar and a maximum 2% of caramel for color stability (EU Reg. 583/ 2009). The geographical origin of ABM ingredients is never specified.
Since 2013, the European Committee for Standardization (CEN) has issued a method for determining the water fraudulently added to the vinegar and the balsamic vinegar product (EN16466-3 18O-IRMS). The method is based on the stable isotope ratios analysis of the bulk AMB sample (expressed as δ18O in ‰ with respect to the international standard V-SMOW2).
Balsamic vinegars with very high density (higher than 1.37 g / mL of sugar) are available on the market. They are obtained by adding a high amount of concentrated must or by a long aging of the product in the barrel, which leads to an intense evaporation and concentration.
Products with such high density cannot be analyzed by using the official method as reported in the EN16466-3 18O-IRMS. Indeed, in this conditions, the equilibration between CO2 and the water in the sample, being the base principle of the process, does not occur.
In this work, the official method has been modified and validated, calculating repeatability (r) and reproducibility (R), by proceeding with a prior dilution of the sample and by applying a correction to the data in order to eliminate the diluent isotopic contribution. Considering the limit value of δ18O for a non-watered product reported in the literature for vinegar and for rectified concentrated must [1-2], the threshold limit of δ18O below which the ABM product can be considered as adulterated was identified.

References

[1] J. Agric. Food Chem. 2014, 62, 32, 8197–8203
[2] Food Control 2013, 29(1), 107–111

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Perini Matteo1, Pianezze Silvia1 and Paolini Mauro

1FONDAZIONE EDMUND MACH

Contact the author

Keywords

stable isotope analysis, balsamic vinegar, high density, watering down

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1].

A meta-analysis of the ecological impact of viticultural practices on soil biodiversity

Viticulture is facing two major challenges – climate change and agroecological transition. The soil plays a pivotal role in these transition processes. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Over the last 15 years, numerous studies evidenced strong effects of viticultural practices on the soil physical, chemical and biological quality. However, to date a global analysis providing a comprehensive overview of the ecological impacts of viticultural practices on soil biological quality is missing.

Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

White wine protein haze can be prevented by removing the grape juice proteins, currently achieved by bentonite addition. To avoid wine volume loss and to minimizes aroma stripping, degrading haze-forming proteins in wine with proteases is a particularly interesting alternative to bentonite. In the present study, two fungal proteases treatments combined with different heating (50, 60, 72 °C) + refreshing steps, were applied on Gewürztraminer grape juice, and compared to bentonite treatments. The impact of these 19 treatments on the wine haze risks was determined by using two heat tests at 50 °C (heating during 30 to 120 min) and 80 °C (heating during 5 to 60 min). The protein contents and compositions were also estimated using the SDS-PAGE + densitometric integration techniques.

Carbon footprint in Austrian viticulture – Evaluation of the main polluters and possible solutions in entire the production chain

The sustainability certification ‘nachhaltig austria’ (www.sustainableaustria.com) has been offered to austrian wineries in an online version for 10 years and over 25% of the austrian wine-growing area is now certified. Since the 2022 harvest, ‘nachhaltig austria’ has automatically calculated the carbon footprint for each winery, per hectare of vineyard, per litre of bulk wine and per 0.75-litre bottle (poelz, w. And rosner, f.g. 2023). In last year’s publications and numerous presentations at national and international level, topics such as refilling glass bottles, lightweight glass bottles, renewable energy, … Etc.

Water status modelling: impact of local rainfall variability in Burgundy (France)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...