IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

Abstract

Aceto balsamico di Modena IGP (ABM) is an Italian worldwide appreciated PGI (Protected Geographical Indication) vinegar,  obtained from cooked and/or concentrated grape must (at least 20% of the volume), with the addition of at least 10% of wine vinegar and a maximum 2% of caramel for color stability (EU Reg. 583/ 2009). The geographical origin of ABM ingredients is never specified.
Since 2013, the European Committee for Standardization (CEN) has issued a method for determining the water fraudulently added to the vinegar and the balsamic vinegar product (EN16466-3 18O-IRMS). The method is based on the stable isotope ratios analysis of the bulk AMB sample (expressed as δ18O in ‰ with respect to the international standard V-SMOW2).
Balsamic vinegars with very high density (higher than 1.37 g / mL of sugar) are available on the market. They are obtained by adding a high amount of concentrated must or by a long aging of the product in the barrel, which leads to an intense evaporation and concentration.
Products with such high density cannot be analyzed by using the official method as reported in the EN16466-3 18O-IRMS. Indeed, in this conditions, the equilibration between CO2 and the water in the sample, being the base principle of the process, does not occur.
In this work, the official method has been modified and validated, calculating repeatability (r) and reproducibility (R), by proceeding with a prior dilution of the sample and by applying a correction to the data in order to eliminate the diluent isotopic contribution. Considering the limit value of δ18O for a non-watered product reported in the literature for vinegar and for rectified concentrated must [1-2], the threshold limit of δ18O below which the ABM product can be considered as adulterated was identified.

References

[1] J. Agric. Food Chem. 2014, 62, 32, 8197–8203
[2] Food Control 2013, 29(1), 107–111

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Perini Matteo1, Pianezze Silvia1 and Paolini Mauro

1FONDAZIONE EDMUND MACH

Contact the author

Keywords

stable isotope analysis, balsamic vinegar, high density, watering down

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.

Colloidal stabilization of young red wine by Acacia Senegal gum: the major implication of protein-rich arabinogalactan-proteins

Acacia senegal gum (Asen) is an edible dried gummy exudate [1] added in young red wines to ensure their colloidal stability, precluding the precipitation of the coloring matter. Asen macromolecules, belonging to the arabinogalactan-protein (AGP) family [2], are hyperbranched, charged and amphiphilic heteropolysaccharides composed especially of sugars (92-96 %) and a small fraction of proteins (1-3 %). Asen is defined as a continuum of macromolecules that could be separated into three fractions by hydrophobic interaction chromatography (HIC) [3-4]. HIC-F1 (85-94 % of Asen), HIC-F2 (6-18 % of Asen) and HIC-F3 (1-3 % of Asen) are named and classified in that order according to their protein content, and then a growing hydrophobicity. The efficiency of Asen towards the coloring matter instability is evaluated according to an “efficacy test” that consists to determine the Asen quantity required to prevent the flocculation by calcium of a colloidal iron hexacyanoferrate solution (International Oenological Codex).

Method for the evaluation of climatic changes envisaging the protection of grape-growing terroirs: the Géoviticulture MCC system in the evaluation of the potential impact of the construction of hydroelectric power plants on viticulture

La recherche, conduite en 2002, a envisagé l’estimation, a priori, de l’effet du changement mesoclimatique sur le potentiel qualitatif de la région viticole de la Serra Gaúcha (Vallée du Rio das Antas) – Brésil, en fonction de la construction de 3 usines hydroélectriques.