IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

High density balsamic vinegar: application of stable isotope ratio analysis to determine watering down.

Abstract

Aceto balsamico di Modena IGP (ABM) is an Italian worldwide appreciated PGI (Protected Geographical Indication) vinegar,  obtained from cooked and/or concentrated grape must (at least 20% of the volume), with the addition of at least 10% of wine vinegar and a maximum 2% of caramel for color stability (EU Reg. 583/ 2009). The geographical origin of ABM ingredients is never specified.
Since 2013, the European Committee for Standardization (CEN) has issued a method for determining the water fraudulently added to the vinegar and the balsamic vinegar product (EN16466-3 18O-IRMS). The method is based on the stable isotope ratios analysis of the bulk AMB sample (expressed as δ18O in ‰ with respect to the international standard V-SMOW2).
Balsamic vinegars with very high density (higher than 1.37 g / mL of sugar) are available on the market. They are obtained by adding a high amount of concentrated must or by a long aging of the product in the barrel, which leads to an intense evaporation and concentration.
Products with such high density cannot be analyzed by using the official method as reported in the EN16466-3 18O-IRMS. Indeed, in this conditions, the equilibration between CO2 and the water in the sample, being the base principle of the process, does not occur.
In this work, the official method has been modified and validated, calculating repeatability (r) and reproducibility (R), by proceeding with a prior dilution of the sample and by applying a correction to the data in order to eliminate the diluent isotopic contribution. Considering the limit value of δ18O for a non-watered product reported in the literature for vinegar and for rectified concentrated must [1-2], the threshold limit of δ18O below which the ABM product can be considered as adulterated was identified.

References

[1] J. Agric. Food Chem. 2014, 62, 32, 8197–8203
[2] Food Control 2013, 29(1), 107–111

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Perini Matteo1, Pianezze Silvia1 and Paolini Mauro

1FONDAZIONE EDMUND MACH

Contact the author

Keywords

stable isotope analysis, balsamic vinegar, high density, watering down

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Carbohydrate dynamics in Shiraz to determine seasonal allocation to the perennial and annual parts in respect to climatic challenges

The dynamic changes of non-structural carbohydrates (NSC) in grapevines during the growing season is driven by phenological events and environmental factors.

Use of the stics crop model as a tool to inform vineyard zonages

STICS est un modèle de culture développé à l’INRA (France) depuis 1996. Il simule les bilans de carbone, d’eau et d’azote dans le système culture-sol, piloté par des données climatiques journaliéres. Il calcule à la fois des variables agricoles (rendement en quantité et qualité) et environnementales (pertes en eau et en azote). Une des originalités de STICS est son adaptabilité à de nombreuses cultures (herbacées, ligneuses, annuelles, pérennes) rendue possible par le choix de paramètres génériques et d’options de formalismes. Le travail présenté traite, dans un premier temps, des spécificités de STICS pour la vigne en terme de bilan trophique, de fonctionnement énergétique et hydrique et d’estimation des teneurs en sucre en en eau du raisin. Nous montrons ensuite diverses sorties du modèle qui permettent de caractériser des terroirs du vignoble des Côtes du Rhône.

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.

Early ripening in cool climate viticulture varieties is mainly based on a mutation in ‘Pinot precocé noir’

For a long time, cool climate grapevine breeding has striven for early ripening cultivars to adapt to the former climate conditions.