IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Abstract

Perceived aroma plays an important role in wine quality, and it depends mainly on the volatile composition. Volatile organic compounds (VOCs) from grapes and those formed during winemaking are involved in the sensory complexity of wines. In aroma-neutral winegrape varieties, the winemaking process itself, and particularly alcoholic fermentation (AF), impacts strongly on the organoleptic characteristics of wines due to the formation of volatile alcohols, acids, and esters. In addition, phenolic compounds could contribute not only to the wine color but also to VOCs evolution during AF.
The main aim of the present study was to evaluate the differences in the concentration of fermentative VOCs among varieties from different Italian geographical zones. For this aim, 246 monovarietal white wines (vintage 2019) from 18 varieties cultivated in 9 different Italian regions were selected. Fermentative alcohols, acids, and esters were extracted by LLME and analyzed by GC-MS. Standard physico-chemical parameters, total polyphenol index, DPPH antioxidant activity, and chromatic characteristics including absorbance at 420 nm and CIELab coordinates were also determined.
Fermentative VOCs are ascribed to the management of FA, therefore the differences observed could be due to both the grape juice composition and the several factors driving FA (yeasts, nutrients, temperature). The results obtained show that fermentative compounds allow to differentiate some monovarietal wines. Albana wines were characterized by the highest average concentrations of total fermentative VOCs, particularly alcohols and ethyl esters, the latter reaching the highest value also in Fiano, Greco, and Pallagrello bianco. In turn, Fiano and Pallagrello showed the highest concentrations of aromatic alcohols. Falanghina and Vermentino wines contained the highest amount of acetates whereas Fiano was the richest in methyl esters. Gewürztraminer wines were the most abundant in volatile acids, followed by Ribolla gialla, Vermentino, Garganega, and Pinot grigio. In addition, Müller Thurgau and Verdicchio wines showed the lowest concentrations of total fermentative VOCs, particularly alcohols. Nosiola wines were characterized by the lowest abundance in acids and acetates, while Pinot grigio and Müller Thurgau wines contained the lowest amount of ethyl and methyl esters, respectively.
Regarding chromatic and phenolic characteristics, Pallagrello and Albana wines were characterized by the highest total phenolic content and antioxidant activity, but also were the darkest wines showing the highest value of b* color coordinate (yellowish). Conversely, Pinot grigio wines showed the lowest antioxidant activity and total phenolic compound concentration. Pinot grigio and Cortese wines had the lightest color and the lowest contribution of the yellow color component (b* coordinate and absorbance at 420 nm).

Acknowledgments: MIUR project PRIN n. 2017RXFFRR.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Río Segade Susana1, Škrab Domen1, Paissoni Maria Alessandra1, Giacosa Simone1, Luzzini Giovanni2, Ugliano Maurizio2, Piergiovanni Maurizio3, Mattivi Fulvio3, Marangon Matteo4, Curioni Andrea4, Parpinello Giuseppina P.5, Versari Andrea5, Piombino Paola5, Moio Luigi5, Gerbi Vincenzo1 and Rolle Luca1

1Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino
2Department of Biotechnology, University of Verona, Italy
3Centre Agriculture Food Environment (C3A), University of Trento, Italy
4Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
5Department of Agricultural Sciences, University of Naples Federico II, Italy

Contact the author

Keywords

volatile compounds, color characteristics, antioxidant potential, white wines, differentiation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Water deficit differentially impacts the performances and the accumulation of grape metabolites of new varieties tolerant to fungi

The use of resistant varieties is a long-term but promising solution to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are now releasing a range of new hybrids performing well regarding fungi susceptibility and producing good quality wines. Unfortunately, insufficient attention is paid by the breeders to the adaptation of these varieties to climatic changes, notably to the increased climatic demand and water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD. This study aimed to characterize the different drought-strategies adopted by 6 new resistant varieties selected by INRAE in comparison to Syrah. To allow the assessment of long-term impacts of WD, field-grown vines were exposed to contrasted WD from 2018 to 2021 under a semi-arid Mediterranean climate. A gradient of WD was applied in the field and controlled through plant measurements at the single plant level. Grape development was non-destructively monitored to determine the arrest of berry phloem unloading. The impacts of WD on berry composition, including water, primary metabolites (sugars, organic acids), secondary metabolites (anthocyanins, thiols precursors) and main cations contents, were assessed at this specific stage. Results showed different varietal responses during the year and inter-annual acclimation in terms of plant water use efficiency, biomass accumulation, as well as yield components and berry composition. WD differentially reduced the accumulation of primary metabolites at plant and berry levels, but it little changed their concentrations in the fruits at the ripe stage. Moreover, WD differentially impacted the accumulation of secondary metabolites and major cations between the varieties. In the talk, we’ll present the main results regarding the WD impacts on fruit metabolites and enlarge the reflection about the practical assessment of the grapevine acclimation to WD.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

Comportamiento de la variedade “Touriga Nacional” en la Región Demarcada del Douro, en diferentes condiciones climáticas y edáficas

A Região Demarcada do Douro, oferece uma diversidade geográfica, climática e biológica (grande número de castas em cultivo) extremamente grande e complexa, originando vinhas