IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Abstract

Perceived aroma plays an important role in wine quality, and it depends mainly on the volatile composition. Volatile organic compounds (VOCs) from grapes and those formed during winemaking are involved in the sensory complexity of wines. In aroma-neutral winegrape varieties, the winemaking process itself, and particularly alcoholic fermentation (AF), impacts strongly on the organoleptic characteristics of wines due to the formation of volatile alcohols, acids, and esters. In addition, phenolic compounds could contribute not only to the wine color but also to VOCs evolution during AF.
The main aim of the present study was to evaluate the differences in the concentration of fermentative VOCs among varieties from different Italian geographical zones. For this aim, 246 monovarietal white wines (vintage 2019) from 18 varieties cultivated in 9 different Italian regions were selected. Fermentative alcohols, acids, and esters were extracted by LLME and analyzed by GC-MS. Standard physico-chemical parameters, total polyphenol index, DPPH antioxidant activity, and chromatic characteristics including absorbance at 420 nm and CIELab coordinates were also determined.
Fermentative VOCs are ascribed to the management of FA, therefore the differences observed could be due to both the grape juice composition and the several factors driving FA (yeasts, nutrients, temperature). The results obtained show that fermentative compounds allow to differentiate some monovarietal wines. Albana wines were characterized by the highest average concentrations of total fermentative VOCs, particularly alcohols and ethyl esters, the latter reaching the highest value also in Fiano, Greco, and Pallagrello bianco. In turn, Fiano and Pallagrello showed the highest concentrations of aromatic alcohols. Falanghina and Vermentino wines contained the highest amount of acetates whereas Fiano was the richest in methyl esters. Gewürztraminer wines were the most abundant in volatile acids, followed by Ribolla gialla, Vermentino, Garganega, and Pinot grigio. In addition, Müller Thurgau and Verdicchio wines showed the lowest concentrations of total fermentative VOCs, particularly alcohols. Nosiola wines were characterized by the lowest abundance in acids and acetates, while Pinot grigio and Müller Thurgau wines contained the lowest amount of ethyl and methyl esters, respectively.
Regarding chromatic and phenolic characteristics, Pallagrello and Albana wines were characterized by the highest total phenolic content and antioxidant activity, but also were the darkest wines showing the highest value of b* color coordinate (yellowish). Conversely, Pinot grigio wines showed the lowest antioxidant activity and total phenolic compound concentration. Pinot grigio and Cortese wines had the lightest color and the lowest contribution of the yellow color component (b* coordinate and absorbance at 420 nm).

Acknowledgments: MIUR project PRIN n. 2017RXFFRR.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Río Segade Susana1, Škrab Domen1, Paissoni Maria Alessandra1, Giacosa Simone1, Luzzini Giovanni2, Ugliano Maurizio2, Piergiovanni Maurizio3, Mattivi Fulvio3, Marangon Matteo4, Curioni Andrea4, Parpinello Giuseppina P.5, Versari Andrea5, Piombino Paola5, Moio Luigi5, Gerbi Vincenzo1 and Rolle Luca1

1Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino
2Department of Biotechnology, University of Verona, Italy
3Centre Agriculture Food Environment (C3A), University of Trento, Italy
4Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
5Department of Agricultural Sciences, University of Naples Federico II, Italy

Contact the author

Keywords

volatile compounds, color characteristics, antioxidant potential, white wines, differentiation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

VineyardFACE: Investigation of a moderate (+20%) increase of ambient CO2 level on berry ripening dynamics and fruit composition

Climate change and rising atmospheric carbon dioxide concentration is a concern for agriculture, including viticulture. Studies on elevated carbon dioxide have already been on grapevines, mainly taking place in greenhouses using potted plants or using field grown vines under higher CO2 enrichment, i.e. >650 ppm. The VineyardFACE, located at Hochschule Geisenheim University, is an open field Free Air CO2 Enrichment (FACE) experimental set-up designed to study the effects of elevated carbon dioxide using field grown vines (Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon). As the carbon dioxide fumigation started in 2014, the long term effects of elevated carbon dioxide treatment can be investigated on berry ripening parameters and fruit metabolic composition. The present study aims to investigate the effect on fruit composition under a moderate increase (+20%; eCO2) of carbon dioxide concentration, as predicted for 2050 on both Riesling and Cabernet Sauvignon. Berry composition was determined for primary (sugars, organic acids, amino acids) and secondary metabolites (anthocyanins). Special focus was given on monitoring of berry diameter and ripening rates throughout three growing seasons. Compared to previous results of the early adaptative phase of the vines [1], our results show little effect of eCO2 treatment on primary metabolites composition in berries. However, total anthocyanins concentration in berry skin was lower for eCO2 treatment in 2020, although the ratio between anthocyanins derivatives did not differ. [1] Wohlfahrt Y., Tittmann S., Schmidt D., Rauhut D., Honermeier B., Stoll M. (2020) The effect of elevated CO2 on berry development and bunch structure of Vitis vinifera L. cvs. Riesling and Cabernet Sauvignon. Applied Science Basel 10: 2486

Growers’ attitudes towards organic certification: the case of Central Otago, New Zealand

New Zealand viticulture has long been characterised by sustainable grape growing practices as promoted by Sustainable Winegrowing New Zealand (SWNZ) as well as by Organic Viticulture.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

Rară Neagră 2.0: prospecting, improving and safeguarding the biodiversity in an eastern european heritage grape variety

The Rară Neagră 2.0 project aims to restore and safeguard the intra-varietal diversity of the ancient Eastern European grape variety Rară Neagră through polyclonal selection and the establishment of a certified genetic conservatory.