IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Fermentative volatile compounds and chromatic characteristics can contribute to Italian white wines diversity

Abstract

Perceived aroma plays an important role in wine quality, and it depends mainly on the volatile composition. Volatile organic compounds (VOCs) from grapes and those formed during winemaking are involved in the sensory complexity of wines. In aroma-neutral winegrape varieties, the winemaking process itself, and particularly alcoholic fermentation (AF), impacts strongly on the organoleptic characteristics of wines due to the formation of volatile alcohols, acids, and esters. In addition, phenolic compounds could contribute not only to the wine color but also to VOCs evolution during AF.
The main aim of the present study was to evaluate the differences in the concentration of fermentative VOCs among varieties from different Italian geographical zones. For this aim, 246 monovarietal white wines (vintage 2019) from 18 varieties cultivated in 9 different Italian regions were selected. Fermentative alcohols, acids, and esters were extracted by LLME and analyzed by GC-MS. Standard physico-chemical parameters, total polyphenol index, DPPH antioxidant activity, and chromatic characteristics including absorbance at 420 nm and CIELab coordinates were also determined.
Fermentative VOCs are ascribed to the management of FA, therefore the differences observed could be due to both the grape juice composition and the several factors driving FA (yeasts, nutrients, temperature). The results obtained show that fermentative compounds allow to differentiate some monovarietal wines. Albana wines were characterized by the highest average concentrations of total fermentative VOCs, particularly alcohols and ethyl esters, the latter reaching the highest value also in Fiano, Greco, and Pallagrello bianco. In turn, Fiano and Pallagrello showed the highest concentrations of aromatic alcohols. Falanghina and Vermentino wines contained the highest amount of acetates whereas Fiano was the richest in methyl esters. Gewürztraminer wines were the most abundant in volatile acids, followed by Ribolla gialla, Vermentino, Garganega, and Pinot grigio. In addition, Müller Thurgau and Verdicchio wines showed the lowest concentrations of total fermentative VOCs, particularly alcohols. Nosiola wines were characterized by the lowest abundance in acids and acetates, while Pinot grigio and Müller Thurgau wines contained the lowest amount of ethyl and methyl esters, respectively.
Regarding chromatic and phenolic characteristics, Pallagrello and Albana wines were characterized by the highest total phenolic content and antioxidant activity, but also were the darkest wines showing the highest value of b* color coordinate (yellowish). Conversely, Pinot grigio wines showed the lowest antioxidant activity and total phenolic compound concentration. Pinot grigio and Cortese wines had the lightest color and the lowest contribution of the yellow color component (b* coordinate and absorbance at 420 nm).

Acknowledgments: MIUR project PRIN n. 2017RXFFRR.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Río Segade Susana1, Škrab Domen1, Paissoni Maria Alessandra1, Giacosa Simone1, Luzzini Giovanni2, Ugliano Maurizio2, Piergiovanni Maurizio3, Mattivi Fulvio3, Marangon Matteo4, Curioni Andrea4, Parpinello Giuseppina P.5, Versari Andrea5, Piombino Paola5, Moio Luigi5, Gerbi Vincenzo1 and Rolle Luca1

1Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino
2Department of Biotechnology, University of Verona, Italy
3Centre Agriculture Food Environment (C3A), University of Trento, Italy
4Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
5Department of Agricultural Sciences, University of Naples Federico II, Italy

Contact the author

Keywords

volatile compounds, color characteristics, antioxidant potential, white wines, differentiation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Tools for terroir classification for the grape variety Kékfrankos

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary.

Exploring the factors affecting spatio‐temporal variation in grapevine powdery mildew

The spatial distribution of powdery mildew is often heterogeneous between neighboring plots, with higher disease pressure in certain places

1H-NMR-based Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

The aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through untargeted and targeted 1H-NMR metabolomics. One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz. The spectra were recorded by applying the NOESYGPPS1D pulse sequency, to achieve water and ethanol signals suppression. No modification of the pH was performed to avoid any chemical alteration of the matrix. The generation of input variables for untargeted analysis was done via bucketing the spectra. The resulting dataset was preprocessed prior to perform unsupervised PCA, by means of MetaboAnalyst web-based tool suite. The identification of compounds for the targeted analysis was performed by comparison to pure compounds spectra by means of SMA plug-in of MNova 14.2.3 software. The dataset containing the concentrations (%) of identified compounds was subjected to one-way analysis of variance (ANOVA) to highlight significant differences among the wines. The untargeted analysis, carried out through the PCA, revealed a clear differentiation among the wines. The fragments of the spectra contributing mostly to the separation were attributed to flavonoids, aroma compounds and amino acids. The targeted analysis leaded to the identification of 68 compounds, whose concentrations were significant different among the wines. The results were related to soils physical-chemical analysis and showed that: 1) high concentrations of flavan-3-ols and flavonols are correlated with high clay content in soils; 2) high concentrations of anthocyanins, amino acids, and aroma compounds are correlated with neutral and moderately alkaline soil pH; 3) low concentrations of flavonoids and aroma compounds are correlated with high soil organic matter content and acidic pH. The 1H-NMR metabolomic analysis proved to be an excellent tool to discriminate between wines originating from grapes grown on different soil types and revealed that soils in the Mediterranean area exert a strong impact on the chemical composition of the wines.

High levels of copper and persistent synthetic pesticides in vineyard soils

Downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and bunch rot (Botrytis cinerea) are the most prevalent fungal diseases in viticulture.

Evaluation of glutathione content in four white varieties in the d.o. Ca. Rioja (Spain)

Glutathione is a tripeptide that is mainly found in reduced form in grapes. It generates during the maturation of the grape, increasing significantly after veraison [1].