IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

Abstract

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.

The idea of this study was to chemically characterize both grapes produced from healthy plants and those obtained from damaged plants. The purpose was to highlight how the plant was able to respond positively or negatively after its leaf surface has been heavily damaged by the beetle.

Nebbiolo (red) and Erbaluce (white) are the V. vinifera L. cultivars selected for this study. These were harvested in three different sampling points, during the last phase of berry development (vintage 2020) from the vineyard located in the Northern part of Piedmont Region. Samples collection was conducted on August 26th, September 3rd and September 9th, including both healthy and popillia-affected samples.
Both the phenolic and aromatic components were characterized in the samples for 93 analytical variables (58 VOCs, 22 phenolics, 13 anthocyanins) whose information has been subjected to statistical analysis.

To further understand the different between healthy and affected state, a PLS-DA model was built. A clear separation was observed between affected and healthy grapes independently of grape variety. From the data set used, 10 phenolics were identified with VIP score higher than 1.5, namely protocatechuic acid-O-hexoside, protocatechuic acid, hydroxy-caffeic acid dimer isomer 1, (E)-coutaric acid, (Z)-fertaric acid, procyanidin dimer, catechin, epicatechin, quercetin-3-O-glucuronide, and quercetin, which are the most significant analytes to explain the discrimination between affected and healthy grapes.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bordiga Matteo1, Selli Serkan2, Hasim Kelebek3, Selvindikb Onur4, Perestrelo Rosa5, Camara José S.5, Travaglia Fabiano1, Coisson Jean Daniel1 and Arlorio Marco1

1Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”
2Department of Food Engineering, Faculty of Agriculture, Cukurova University
3Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Turkey
4Cukurova University Central Research Laboratory (CUMERLAB), 01330 Adana, Turkey
5CQM-UMa, Centro de Química da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal

Contact the author

Keywords

Japanese beetle; Nebbiolo; Erbaluce

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of fertigation strategies to adapt PGI Côtes de Gascogne production to hot vintage

The development of fertigation could be a possible solution to adapt PGI Côtes de Gascogne (south-western France) wine production to climate change. The goal would be to limit the negative effects of water stress on yield performance expectation (around 15 tons per hectare) and to make the use of fertilizers more efficient. This study aimed to compare the effects of three strategies of water and minerals supply on grapes and wines qualities. Two fertigation practices were compared to a rainfed control which is the current standard of the local grape growing production. The fertilizers (nitrogen and potassium) were (i) fully brought by irrigation pipe during the season, (ii) partially brought by irrigation pipe and partially on the soil or (iii) fully brought on the soil at the beginning of the season for the non-irrigated control (local standard). The trial was run on cv. Colombard trained on spur pruned with vertical shoot positioning system on a sandy-silty-clay soil over the 2020 vintage which was particularly hot for the region. Moderate to strong water deficit appeared during the growing period of the berries and held on after veraison. Irrigation strategies allowed for maintaining grapevine without water deficit and being significantly different from the control water status. Grapevine with fully or partial fertigation strategies produced 25% more yield mainly due to the increase of the bunch weight. Also, the fully fertigation showed the best ratio between yield and maturity and brought 30% less of fertilizers (both nitrogen and potassium) than the two other strategies. Finally, the analysis of aromatic compounds in Colombard wines, varietal thiols family, showed the same level of concentrations for the 3 treatments, confirming that the yield performance did not impact the aromatic potential in this trial.

Influence du porte-greffe sur le statut minéral du greffon

Dans le cadre de TerclimPro 2025, Elisa Marguerit a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8387

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Over the past 70 years, scientific literature has consistently illustrated the advantageous effects of arbuscular mycorrhiza fungi (AMF) on plant growth and stress tolerance. Recent reviews not only reaffirm these findings but also underscore the pivotal role of AMF in ensuring the sustainability of viticulture. In fact, various companies actively promote commercial inoculants based on AMF as biofertilizers or biostimulants for sustainable viticulture. However, despite the touted benefits of these products, the consistent effectiveness of AMF inoculants in real-world field conditions remains uncertain.

Non-invasive grapevine inflorescence detection using YOLOv11 under field conditions

Accurate and early yield estimation in vineyards is essential for the effective management of resources and informed decision-making in viticulture.