IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

Abstract

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.

The idea of this study was to chemically characterize both grapes produced from healthy plants and those obtained from damaged plants. The purpose was to highlight how the plant was able to respond positively or negatively after its leaf surface has been heavily damaged by the beetle.

Nebbiolo (red) and Erbaluce (white) are the V. vinifera L. cultivars selected for this study. These were harvested in three different sampling points, during the last phase of berry development (vintage 2020) from the vineyard located in the Northern part of Piedmont Region. Samples collection was conducted on August 26th, September 3rd and September 9th, including both healthy and popillia-affected samples.
Both the phenolic and aromatic components were characterized in the samples for 93 analytical variables (58 VOCs, 22 phenolics, 13 anthocyanins) whose information has been subjected to statistical analysis.

To further understand the different between healthy and affected state, a PLS-DA model was built. A clear separation was observed between affected and healthy grapes independently of grape variety. From the data set used, 10 phenolics were identified with VIP score higher than 1.5, namely protocatechuic acid-O-hexoside, protocatechuic acid, hydroxy-caffeic acid dimer isomer 1, (E)-coutaric acid, (Z)-fertaric acid, procyanidin dimer, catechin, epicatechin, quercetin-3-O-glucuronide, and quercetin, which are the most significant analytes to explain the discrimination between affected and healthy grapes.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bordiga Matteo1, Selli Serkan2, Hasim Kelebek3, Selvindikb Onur4, Perestrelo Rosa5, Camara José S.5, Travaglia Fabiano1, Coisson Jean Daniel1 and Arlorio Marco1

1Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”
2Department of Food Engineering, Faculty of Agriculture, Cukurova University
3Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Turkey
4Cukurova University Central Research Laboratory (CUMERLAB), 01330 Adana, Turkey
5CQM-UMa, Centro de Química da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal

Contact the author

Keywords

Japanese beetle; Nebbiolo; Erbaluce

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Is your juice truly organic? An isotopic approach for certifying organic grape juice

The sustainability and authenticity of grape juice production have gained increasing attention, particularly regarding the environmental impact and health benefits of organic practices.

Simultaneous monitoring of dissolved CO2 and collar from Rosé sparkling wine glasses: the impact of yeast macromolecules

Champagne or sparkling wines elaborated through the same traditional method, which consists in two major yeast-fermented steps, typically hold about 10 to 12 g/L of dissolved CO2 after the second fermentation in a closed bottle. Hundreds of molecules and macromolecules originating from grape and yeast cohabit with dissolved CO2; they are essential compounds contributing to many organoleptic characteristics (effervescence, foam, aroma, taste, colour…). Indeed, the second alcoholic fermentation and the maturation on lees (which may last from 12 months up to several years) both induce various quantitative and qualitative changes in the wine through the action of yeast, as listed hereafter: development of aromas during aging on lees, release of nitrogen compounds during autolysis and release of macromolecules (polysaccharides, lipids, nucleic acids) in wine.

Différenciation de parcelles de Chenin du Val de Loire, a l’aide de l’etude des flores fongiques des raisins, en utilisant l’outil DGGE

Depuis le millésime 2002, une étude est menée sur la diversité de la flore fongique de parcelles du cépage chenin, situées essentiellement sur les appellations de Vouvray et Montlouis ; deux appellations séparées par le fleuve nommé la Loire. Les parcelles se situent dans des conditions pédoclimatiques différentes, qui se retrouvent au travers des suivis de maturité et l’état sanitaire.

The dynamics of δ13C and δ18O in musts during berries development

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.