IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

Abstract

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.

The idea of this study was to chemically characterize both grapes produced from healthy plants and those obtained from damaged plants. The purpose was to highlight how the plant was able to respond positively or negatively after its leaf surface has been heavily damaged by the beetle.

Nebbiolo (red) and Erbaluce (white) are the V. vinifera L. cultivars selected for this study. These were harvested in three different sampling points, during the last phase of berry development (vintage 2020) from the vineyard located in the Northern part of Piedmont Region. Samples collection was conducted on August 26th, September 3rd and September 9th, including both healthy and popillia-affected samples.
Both the phenolic and aromatic components were characterized in the samples for 93 analytical variables (58 VOCs, 22 phenolics, 13 anthocyanins) whose information has been subjected to statistical analysis.

To further understand the different between healthy and affected state, a PLS-DA model was built. A clear separation was observed between affected and healthy grapes independently of grape variety. From the data set used, 10 phenolics were identified with VIP score higher than 1.5, namely protocatechuic acid-O-hexoside, protocatechuic acid, hydroxy-caffeic acid dimer isomer 1, (E)-coutaric acid, (Z)-fertaric acid, procyanidin dimer, catechin, epicatechin, quercetin-3-O-glucuronide, and quercetin, which are the most significant analytes to explain the discrimination between affected and healthy grapes.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bordiga Matteo1, Selli Serkan2, Hasim Kelebek3, Selvindikb Onur4, Perestrelo Rosa5, Camara José S.5, Travaglia Fabiano1, Coisson Jean Daniel1 and Arlorio Marco1

1Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”
2Department of Food Engineering, Faculty of Agriculture, Cukurova University
3Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Turkey
4Cukurova University Central Research Laboratory (CUMERLAB), 01330 Adana, Turkey
5CQM-UMa, Centro de Química da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal

Contact the author

Keywords

Japanese beetle; Nebbiolo; Erbaluce

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Control of microbial development in wines elaborated by carbonic maceration

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

Changing New Zealand climate equals a changing New Zealand terroir?

Changing New Zealand climate equals a changing New Zealand terroir

DNA-free editing to improve stress resilience of wine grape genotypes recalcitrant-to-regeneration

Wine viticulture, being firmly linked to the vine-terroir relationship, has always encountered significant bottlenecks to genetic innovation. Nonetheless, the development of new breeding strategies leading to the selection of stress resilient genotypes is urgent, especially in viticulture, where it would allow reducing the use of chemical treatments adopted to control fungal diseases. Genome editing represents an extremely promising breeding technique. Unfortunately, the well-known recalcitrance of several wine grape cultivars to in vitro regeneration strongly limits the exploitation of this approach, which to our knowledge has so far been developed on table grape genotypes with high regeneration potential.

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Bioprospecting of native Metschnikowia pulcherrima strains for biocontrol and aroma enhancement in the wine production chain

Metschnikowia pulcherrima is a well-studied non-conventional oenological yeast due to its positive contributions to winemaking as a bioprotective agent and as an aroma-enhancing starter in sequential fermentations with Saccharomyces cerevisiae (Binati et al., 2023; Canonico et al., 2023).