IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

Abstract

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.

The idea of this study was to chemically characterize both grapes produced from healthy plants and those obtained from damaged plants. The purpose was to highlight how the plant was able to respond positively or negatively after its leaf surface has been heavily damaged by the beetle.

Nebbiolo (red) and Erbaluce (white) are the V. vinifera L. cultivars selected for this study. These were harvested in three different sampling points, during the last phase of berry development (vintage 2020) from the vineyard located in the Northern part of Piedmont Region. Samples collection was conducted on August 26th, September 3rd and September 9th, including both healthy and popillia-affected samples.
Both the phenolic and aromatic components were characterized in the samples for 93 analytical variables (58 VOCs, 22 phenolics, 13 anthocyanins) whose information has been subjected to statistical analysis.

To further understand the different between healthy and affected state, a PLS-DA model was built. A clear separation was observed between affected and healthy grapes independently of grape variety. From the data set used, 10 phenolics were identified with VIP score higher than 1.5, namely protocatechuic acid-O-hexoside, protocatechuic acid, hydroxy-caffeic acid dimer isomer 1, (E)-coutaric acid, (Z)-fertaric acid, procyanidin dimer, catechin, epicatechin, quercetin-3-O-glucuronide, and quercetin, which are the most significant analytes to explain the discrimination between affected and healthy grapes.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bordiga Matteo1, Selli Serkan2, Hasim Kelebek3, Selvindikb Onur4, Perestrelo Rosa5, Camara José S.5, Travaglia Fabiano1, Coisson Jean Daniel1 and Arlorio Marco1

1Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”
2Department of Food Engineering, Faculty of Agriculture, Cukurova University
3Department of Food Engineering, Faculty of Engineering, Adana AlparslanTurkes Science and Technology University, Adana, Turkey
4Cukurova University Central Research Laboratory (CUMERLAB), 01330 Adana, Turkey
5CQM-UMa, Centro de Química da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal

Contact the author

Keywords

Japanese beetle; Nebbiolo; Erbaluce

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Evaluating alternatives to cold stabilization in wineries: the use of carboximethyl cellulose, potassium polyaspartate, electrodialysis and ion exchange resins – the results after one year in the bottle

The tartaric stabilization of wines before bottling to avoid the precipitation of tartaric acid salts is an important and common step during wine production. The presence of precipitated salt crystals in bottle wines is detrimental for their quality and even a legal issue in some countries. Cold stabilization is the most common stabilization treatment. Although it has been shown to be effective, it has some significant disadvantages, mainly regarding losses of color and aromas and its high cost. Therefore, other products and methodologies are being introduced in the wineries for the replacement of this process. Some of these new techniques involve the reduction of the ions causing the insolubilization of tartaric acid while other are based in the formation of protective colloids or the inhibition of the crystallization of salts. In this study, white, rosé and red wines have been treated with carboxymethylcellulose, potassium polyaspartate and an ion exchange resin. The tartaric stability of the wines, together with the oenological, chromatic and sensory characteristics were studied after the wines had been stored during one year in the bottle. The results indicate that the use of carboxymethyl cellulose and potassium polyaspartate maintained the best the sensory and chromatic characteristics and the wine stability of the wines in comparison with an untreated control wine.

The impact of global warming on Ontario’s icewine industry

Ontario’s wine regions lie at the climatic margins of commercial viticulture owing to their cold winters and short cool growing season. The gradual warming of northern latitudes projected under a human-induced climate change scenario could bring mixed benefits to these wine regions.

Variability of Tempranillo grape quality within the Ribera del Duero do (Spain) and relationships with climatic characteristics

The aim of this research was to evaluate the variability of ripening characteristics of the Tempranillo variety within the Ribera del Duero Designation of Origin (Spain) and it relationships with soil characteristics

Permanent vs temporary cover crops in a Sangiovese vineyard: preliminary results on vine physiology and productive traits

Cover crops in vineyards have been extensively studied, as the choice of grass species and their management significantly influence soil properties and vine performance.

Enhancing the color traits of ‘Nebbiolo’ and ‘Dolcetto’ grapes: the role of abscisic acid during ripening

The red Italian variety Nebbiolo (Vitis vinifera L.), used in the production of the prestigious Barolo and Barbaresco wines, is renowned for its aromatic and structural complexity but also for its low color intensity.