IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Abstract

Sforzato di Valtellina DOCG is a special reinforced red wine produced using withered Nebbiolo grapes. The withering process takes place in traditional rooms under natural environmental conditions; it starts immediately after the harvest and ends not before the 1st December of the same year. The process can be performed with different bunch placements that can influence the grapes features.The purpose of the study is to compare the effect on grape physico-chemical parameters for four withering bunch placement systems: hanged clusters (HC), plastic crates (CT), breathable mesh fabric on wooden frames panels (MF), and reed mats (RM). For all the systems studied, the withering length was two months at a temperature between 6 and 19 °C and a relative humidity of 41-88%. The grapes were sampled at the beginning, at half time, and at the end of withering. For each sampling point, weight loss rate, skins mechanical properties (i.e. hardness and thickness), must technological parameters, and skins and seeds extractable polyphenols, flavonoids, anthocyanins, and condensed tannins were studied. At the end of withering, the berry weight loss resulted very different among the systems, ranging from 18.79 to 12.73%. HC showed the fastest weight loss, followed by MF, CT, and RM. Interestingly, the dehydration kinetics showed different trends over the process: for HC the rate of weight loss (WLR, %/day) resulted higher in the first half of the process and then decreased; on the contrary, the kinetics of CT and MF were slower at the beginning of withering compared with the second phase; for RM, instead, the WLR remained fairly constant throughout the entire period.These differences yielded different consequences on the complex balance between concentration-synthesis and loss of compounds during withering. HC led to a significantly higher sugar content than the others after two months of withering. Instead, no significant differences were found among the systems for total acidity, pH, acetic acid, and glycerol (markers of microbial development), and mechanical properties. As regards phenolics, RM led to a significant reduction in skin extractable polyphenols and flavonoids when expressed as mg/kg berries, possibly because the lower concentration effect did not exceed the greater loss of these compounds compared to the other placements. No significant differences were found among systems in seeds polyphenols.In conclusion, under the same environmental conditions bunch placement influenced weight loss, dehydration kinetics, skins polyphenols, and to a lesser extent also the sugar content. The best compromise between weight loss and grape features seems to be the use of plastic crates, whereas hanged clusters placement allowed to achieve the same weight loss faster, although resulting in a higher sugar content. Therefore, these results can provide knowledge to choose the withering system with awareness according to the established oenological objective.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Scalzini Giulia1, Giacosa Simone1, Paissoni Maria Alessandra1, Río Segade Susana1, Rolle Luca1 and Gerbi Vincenzo1

1University of Turin, Department of Agricultural, Forest and Food Sciences

Contact the author

Keywords

bunch placement, grape dehydration, weight loss rate, physico-chemical parameters, special wines

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit

Characterization of resistant varieties produced in the context of a search for regional typicality

Planted between 2018 and 2019, the ‘New Vine’ system is a vineplot, comprising 169 individuals genotypes (5 vines/individual), located on a gravelous soil, in the INRAE Grande-Ferrade site (Villenave d’Ornon, France).

Determination of Aroma Compounds in Grape Mash under Conditions of Tasting by On-line Near-Infrared Spectroscopy

The production of high-quality wines requires the use of high-quality grapes. Some compounds originating from grapes may negatively influence the odour and flavour of the resulting wine in their original form or as precursors for off-odours and –flavours. Therefore, a rapid evaluation of the grapes directly upon receival at the winery is advantageous. Up to now, grape aroma is mainly evaluated by tasting, however, this leads to subjective results. The use of near-infrared (NIR) spectroscopy allows a rapid, objective and destruction-free analysis without previous sample preparation. Moreover, the measurement can be integrated into an existing process without additional sampling.

Current climate change in the Oplenac wine-growing district (Serbia)

Serbian autochthonous vine varieties Smederevka (for white wines) and Prokupac (for rosé and red wines) are the primary representatives of typical characteristics of wines and terroir of numerous wine-growing areas in Serbia. In the past, these varieties were the leading vine varieties, however, as the result of globalization of winemaking and the trend of consumption of wines from widely prevalent vine varieties, they were replaced by introduced international varieties. Smederevka and Prokupac vine varieties are characterized by later time of grape ripening, and relative sensitivity to low temperatures. Climate conditions can be a restrictive factor for production of high-quality grapes and wine and for the spatial spreading of these varieties in hilly continental wine-growing areas.
This paper focuses on the spatial analysis of changes of main climate parameters, in particular, analysis of viticultural bioclimatic indices that were determined for the purposes of viticulture zoning of wine-growing areas in the period 1961-2010, and those same parameters determined for the current, that is, referential climate period (1988-2017). Results of the research, that is, analysis of climate changes indicate that the majority of examined climate parameters in the Oplenac wine-growing district improved from the perspective of Smederevka and Prokupac vine varieties. These studies of climate conditions indicate that changes of analyzed climate parameters, that is, bioclimatic indices will be favorable for cultivation of varieties with later grape ripening times and those more sensitive to low temperatures, such as the autochthonous vine varieties Smederevka and Prokupac, therefore, it is recommended to producers to more actively plant vineyards with these varieties in the territory of the Oplenac wine-growing district.

Climate, grapes, and wine: structure and suitability in a variable and changing climate

Climate is a pervasive factor in the success of all agricultural systems, influencing whether a crop is suitable to a given region, largely controlling crop production and quality