IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Abstract

Sforzato di Valtellina DOCG is a special reinforced red wine produced using withered Nebbiolo grapes. The withering process takes place in traditional rooms under natural environmental conditions; it starts immediately after the harvest and ends not before the 1st December of the same year. The process can be performed with different bunch placements that can influence the grapes features.The purpose of the study is to compare the effect on grape physico-chemical parameters for four withering bunch placement systems: hanged clusters (HC), plastic crates (CT), breathable mesh fabric on wooden frames panels (MF), and reed mats (RM). For all the systems studied, the withering length was two months at a temperature between 6 and 19 °C and a relative humidity of 41-88%. The grapes were sampled at the beginning, at half time, and at the end of withering. For each sampling point, weight loss rate, skins mechanical properties (i.e. hardness and thickness), must technological parameters, and skins and seeds extractable polyphenols, flavonoids, anthocyanins, and condensed tannins were studied. At the end of withering, the berry weight loss resulted very different among the systems, ranging from 18.79 to 12.73%. HC showed the fastest weight loss, followed by MF, CT, and RM. Interestingly, the dehydration kinetics showed different trends over the process: for HC the rate of weight loss (WLR, %/day) resulted higher in the first half of the process and then decreased; on the contrary, the kinetics of CT and MF were slower at the beginning of withering compared with the second phase; for RM, instead, the WLR remained fairly constant throughout the entire period.These differences yielded different consequences on the complex balance between concentration-synthesis and loss of compounds during withering. HC led to a significantly higher sugar content than the others after two months of withering. Instead, no significant differences were found among the systems for total acidity, pH, acetic acid, and glycerol (markers of microbial development), and mechanical properties. As regards phenolics, RM led to a significant reduction in skin extractable polyphenols and flavonoids when expressed as mg/kg berries, possibly because the lower concentration effect did not exceed the greater loss of these compounds compared to the other placements. No significant differences were found among systems in seeds polyphenols.In conclusion, under the same environmental conditions bunch placement influenced weight loss, dehydration kinetics, skins polyphenols, and to a lesser extent also the sugar content. The best compromise between weight loss and grape features seems to be the use of plastic crates, whereas hanged clusters placement allowed to achieve the same weight loss faster, although resulting in a higher sugar content. Therefore, these results can provide knowledge to choose the withering system with awareness according to the established oenological objective.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Scalzini Giulia1, Giacosa Simone1, Paissoni Maria Alessandra1, Río Segade Susana1, Rolle Luca1 and Gerbi Vincenzo1

1University of Turin, Department of Agricultural, Forest and Food Sciences

Contact the author

Keywords

bunch placement, grape dehydration, weight loss rate, physico-chemical parameters, special wines

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps.

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

Anthocyanins, flavonols and hydroxycinnamates of eight vitis vinifera cultivars from the balearic islands

In 2008 the anthocyanin, flavonol and hydroxycinnamate (HCT) contents of the skins of five coloured berry cultivars (‘Escursac’, ‘Esperó de Gall’, ‘Galmeter’, ‘Valent negre’ and ‘Vinater negre’), of two white cultivars (‘Argamussa’ and ‘Prensal blanc’) and of one weakly rose cultivar (‘Giró ros’), native from Balearic Islands, were characterized.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.