IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Varietal thiol precursors in Trebbiano di Lugana grape and must

Varietal thiol precursors in Trebbiano di Lugana grape and must

Abstract

Trebbiano di Lugana (TdL) is a white variety of Vitis vinifera mainly cultivated in an Italian area located south near Garda lake (Verona, north of Italy). This grape cultivar, also known as “Turbiana,” is used for the production of TdL wine with recognized Protected Designation of Origin whose volatile profile was recently determined [1]. The presence of varietal thiols in TdL, namely 3-mercaptohexan-1-ol and its acetate form, conferring the tropical and citrus notes, has been documented. Winemaking strategies were also described with the purpose of protecting and maintain these desired aromas [2]. To the best of our knowledge, the varietal thiol precursors (VTPs) were not previously determined in TdL grape and must. This study aimed to quantify VTPs in both grape during the ripening and must during the pressing. Volatile C6 compounds were also measured in the must fractions.
TdL grapes were sampled during the ripening in two vineyards, differing for the content of readily assimilable nitrogen (RAN), for a total of five samplings each. The musts were produced in an industrial plan collecting the samples during the pressing for a total of nine samplings [3]. VTPs were identified and quantified in grape fractions, grape samples and must fractions by ULPC coupled High Resolution Mass Spectrometry (HRMS) after SPE of samples [4]. Volatile C6 compounds, namely trans-2-hexen-1-ol, trans-3-hexen-ol, 2-hexenal, 1-hexanol, cis-3-hexen-1-ol and cis-2-hexen-1-ol, were determined by SPME-GC/MS [5].
S-3-(hexan-1-ol)-L-glutathione (G-3SH), S-3-(hexan-1-ol)-L-cysteine (Cys-3SH) and S-3-(hexanal)-glutathione (G-3SHal) were detected in both grape and must samples. At harvest, grapes with lower RAN revealed about 3-folds lower levels of G-3SH (79.71±0.97 μg/L vs. 208.66±1.35 μg/L) and G-3SHal (4.7±0.1 mg/L vs. 13.1±0.0 mg/L), and 2-folds lower amounts of Cys-3SH (11.95±0.82 μg/L vs. 21.75±0.47 μg/L). This suggests the level of RAN in grape to affect VPT synthesis. Nonetheless, the musts obtained with the two grapes showed comparable concentrations of G-3SH (50.71±0.37 μg/L as average); Cys-3SH was found at trace levels in both musts, and little amounts of G-3SHal was detected only in the must with higher RAN (29.53±7.37 μg/L). Considering the volatile C6 compounds, trans-3-hexen-1-ol, cis-3-hexen-1-ol and cis-2-hexen-1-ol were similar in the two investigated musts; trans-2-hexen-1-ol was higher in the must with low RAN as well as 2-hexenal and 1-hexanol. No significant correlation was found between the VPTs and volatile C6 compounds in the must fractions analysed.
These data suggest RAN to impact the VPT concentrations in grape. Moreover, pressing was found to play an important role on VPTs content of musts.

References

[1] Fracassetti D., Camoni D., Montresor L., Bodon R., Limbo S. Chemical characterization and volatile profile of Trebbiano di Lugana wine: A case study. Foods 2020, 9, 956. https://doi.org/10.3390/foods9070956.
[2] Mattivi F., Fedrizzi B., Zenato A., Tiefenthaler P., Tempesta S., Perenzoni D., Cantarella P., Simeoni F., Vrhovsek U. Development of reliable analytical tools for evaluating the influence of reductive winemaking on the quality of Lugana wines. Anal. Chim. Acta 2012, 732, 194–202. https://doi.org/10.1016/j.aca.2011.11.051.
[3] Tirelli A., De Noni I., Stuknytė M., Pica V., Fracassetti D. Role of extraction procedures on the concentration of varietal thiol precursors in Grillo white grape must. Aust. J. Grape Wine Res. 2022, 28, 61-69. https://doi.org/10.1111/ajgw.12514.
[4] Fracassetti D., Stuknyté M., La Rosa C., Gabrielli M., De Noni I., Tirelli A. Thiol precursors in Catarratto Bianco Comune and Grillo grapes and effect of clarification conditions on the release of varietal thiols in wine. Aust. J. Grape Wine Res. 2018, 24, 125-133. https://doi.org/10.1111/ajgw.12311.
[5] Bosso A., Follis R., Guaita M., Motta S., Panero L., Petrozziello M. Caratterizzazione del quadro polifenolico ed aromatico di mosti di 5 diverse cultivar a bacca bianca, sottoposti a pressatura all’aria a sotto azoto. From “Territori di vini-progetti di ricerca per il settore vitivinicolo” edited by Società Consortile territori Divini A.R.L. (stampa La GRAFICA FAGGIAN S.R.L.-Campodarsego (PD). Proceedings of the conference “Territori diVini”, Treviso, 24 june 2011: 29-37.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Fracassetti Daniela1, De Noni Ivano1, Petrozziello Maurizio2, Bonello Frederica2 and Tirelli Antonio1 

1Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano
2CREA-VE Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia

Contact the author

Keywords

Grape ripening, Pressing, C6 compounds, Must

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effect of ozone application for low-input postharvest dehydration of wine grapes 

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice.

Temperature variability assessment at vineyard scale: control of data accuracy and data processing protocol

Climatic variability studies at fine scale have been developed in recent years with the reduction of material cost and the development of competitive miniaturized sensors. This work is forming part the LIFE-ADVICLIM project, of which one of the objectives is to model spatial temperature variability at vineyard scale. In the Bordeaux pilot site, a large network of data loggers has been set up to record temperature close to the vine canopy. The reduced distance between plant foliage and measurement equipment raises specific issues and leads to an increased rate of outliers compared to data retrieved from classical weather stations. Some of these were detected during data analysis, but others could not be easily identified. The present study aims to address the issue of data quality control and provide recommendations for data processing in climatic studies at fine scale.

Mining terroir influence on bioactive polyphenols from grape stems: A correlation-network-driven approach to spatialize metabolomics data

In viticulture, the concept of terroir is often used to enlighten the environmental-based typicity of grapevines grown in a local area however its scientific basis remains under debate. Grape polyphenols as key player of the plant defense system enables adaptation to environmental changes and so far, form a unique metabolic component to investigate the terroir influence.

Integration of the AOC and terroir concepts by future professionals of the international wine sector

A survey has been conducted on 32 students and 25 former students of 28 nationalities of an international master course training executives of the international Wine sector.

High-resolution aerial thermography for water stress estimation in grapevines

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels.