IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of press fractioning on current and phenolic compositions of Pinot noir and Pinot meunier wines

Impact of press fractioning on current and phenolic compositions of Pinot noir and Pinot meunier wines

Abstract

In the Champagne’s region, a complete press cycle is a series of pressure increases (squeezes) and decreases (returns). After alcoholic fermentation, the two wines (the “cuvee” and the “tailles”) obtained from grape juice fractions exhibit strong differences for numerous characteristics. Nevertheless, there is no study of the impact of the press cycle, followed after each pressure increase (22-28 steps), on wine colour, current analyses and phenolic composition. So, the aim of this study (vintage 2020) was to investigate the composition changes of Pinot noir and Pinot meunier wines, produced from 22-28 grape juices isolated for each complete pressing cycle. The studied parameters were: colour (L*a*b*), pH, TA, malic and tartaric acids, alcohol, a-NH2, Ca2+ and K+, as well as anthocyanins (peonidin and malvidin), phenolic acids (protocatechuic acid, caftaric acid, cis-coutaric acid, trans-coutaric acid, fertaric acid, GRP) and flavanols (catechin and epicatechin). Previously published studies on wine characteristics obtained with juice fractions were based on 4-5 samples per pressing, i.e. one sample from each of the 4-5 squeezes. Most of the parameters showed fully mathematically modelable evolutions, with polynomial curves of order 2 (Vrigneau et al., 2019). When we study the wines from the musts taken after each change in pressure of 200 mBars, i.e. 22 to 28 samples for the entire pressing cycle, we observe that there is in fact a relative stability of the parameters throughout the squeeze and that the most marked changes are essentially observed after a stage of depressurisation and pomace reworking. These observations, never published to our knowledge, show the interest of juice separation after a significant change in grape juice quality instead of juice separation based solely on volumetric rules. These results lead us to reconsider how to separate the “Cuvée” and the “Tailles”. For catechins/epicatechins and GRP, the concentrations increase considerably at the beginning of each squeeze before decreasing, once the juices that have undergone the oxidative shock linked to the decompaction of the pomace are extracted. Other compounds such as protocatechuic or cis-coutaric acids increase throughout the pressing process, in a rather regular way. Finally, compounds such as trans-coutaric and caftatir acids show maximum levels well before the end of pressing. We can therefore see that the content and composition of the phenolic compounds evolve quite differently from those observed in the usual oenological analyses.
As a conclusion, this study brings a greater understanding of Pinot noir and Pinot meunier wine on their phenolic compositions and colour changes all along the press cycle. These results could be a good tool for winemakers to decide how to separate the grape juice
fractions during the pressing cycle to produce different styles of wines with different sensory qualities and aging potential.

References

Vrigneau C., Salmon T., Soufyani Y., Robillard B., Bécard B., Liu P-H., Heredia Mira F. J., Trosset J-Y., Marchal R. Impact of press fractioning on Pinot noir and Pinot meunier grape juice and wine compositions and colour. 11th International symposium of Enology (Œno2019) – 11th edition of In Vino Analytica Scientia symposium (IVAS 2019), June 25-28, 2019, Bordeaux, France.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Marchal Richard1, Vrigneau Céline2, Salmon Thomas1, Robillard Bertrand2 and Jourdes Michaël3

1University of Reims – Laboratory of Oenology, University of Haute-Alsace
2Institut Oenologique de Champagne, Epernay, France
3UMR Œnology (OENO), UMR 1366, ISVV, Université de Bordeaux-INRAE-Bordeaux INP, F33882 Villenave d’Ornon, France

Contact the author

Keywords

Press fractioning, wine, phenolic compounds, sparkling base wine, colour

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Smoke exposure effects on red wines: how much is too much?

Increasing wildfire frequency in the United States has led to the indirect impact of smoke in vineyards, affecting grape quality and wine sensory attributes, commonly called “smoke taint”.

The impact of ethyl esters, monoterpenes and volatile thiols to the perception of tropical fruit aromas in white wines

Many varietal white wines have aroma qualities that incorporate various tropical fruit aromas. These tropical fruit aromas are found to be considered positive qualities of the wines with consumers having positive emotional responses [1].

Prediction of the production kinetics of the main fermentative aromas in alcoholic fermentation

Fermentative aromas (especially esters and higher alcohols) highly impact the organoleptic profile of young and white wines. The production of these volatile compounds depends mainly on temperature and Yeast Available Nitrogen (YAN) content in the must. Available dynamic models predict the main reaction
(bioconversion of sugar into ethanol and CO2 production) but none of them considers the production kinetics of fermentative aroma compounds during the process of fermentation. We determined the production kinetics of the main esters and higher alcohols for different values of initial YAN content and temperature, using an innovative online monitoring Gas Chromatography device.

Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

The need to combine multimodal data for complex samples is due to the different information captured in each of the techniques (modes).

Upscaling the integrated terroir zoning through digital soil mapping: a case study in the Designation of Origin Campo de Borja

homogeneous zones by intersecting several partial zonings of major factors that influence vineyard growth. Each of them follows specific process from their corresponding disciplines. Soil zoning specifically refers to a Soil Resource Inventory map that has traditionally been generated by conventional soil mapping methods. These methods have shortcomings in reaching fine cartographic and categorical details and involve significant expenses, which undermines their applicability. A new framework named Digital Soil Mapping has introduced quantitative models by statistical techniques to establish soil-landscape relationships and is able to provide intensive scale cartography.

In the present study, a microzoning at 1:10.000 scale is generated from an initial zoning, where the conventional soil map with polytaxic map units is replaced by a new one from digital techniques that disaggregates them. The comparison between the zonings considers a quantitative evaluation of capability for each Homogeneous Terroir Unit by means of the Viticultural Quality Index and its categorization based on its distribution by map. The spatial intersection of both maps gives rise to a confusion matrix in which the flows of class variations after the substitution are assessed.

The results show a five-fold increase in the number of Homogeneous Terroir Units identified and a larger differentiation among them, evidenced by a wider range in the capability index distribution. Both elements are accompanied by an increase in the detection of areas of higher potential within previously undervalued uniform zones.These features are a direct effect of the improvements brought by Digital Soil Mapping techniques and would verify the advantages of their implementation in the Integrated Terroir zoning. Eventually, such new highly detailed terroir units would benefit precision viticulture and sustainable management practices.