IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of press fractioning on current and phenolic compositions of Pinot noir and Pinot meunier wines

Impact of press fractioning on current and phenolic compositions of Pinot noir and Pinot meunier wines

Abstract

In the Champagne’s region, a complete press cycle is a series of pressure increases (squeezes) and decreases (returns). After alcoholic fermentation, the two wines (the “cuvee” and the “tailles”) obtained from grape juice fractions exhibit strong differences for numerous characteristics. Nevertheless, there is no study of the impact of the press cycle, followed after each pressure increase (22-28 steps), on wine colour, current analyses and phenolic composition. So, the aim of this study (vintage 2020) was to investigate the composition changes of Pinot noir and Pinot meunier wines, produced from 22-28 grape juices isolated for each complete pressing cycle. The studied parameters were: colour (L*a*b*), pH, TA, malic and tartaric acids, alcohol, a-NH2, Ca2+ and K+, as well as anthocyanins (peonidin and malvidin), phenolic acids (protocatechuic acid, caftaric acid, cis-coutaric acid, trans-coutaric acid, fertaric acid, GRP) and flavanols (catechin and epicatechin). Previously published studies on wine characteristics obtained with juice fractions were based on 4-5 samples per pressing, i.e. one sample from each of the 4-5 squeezes. Most of the parameters showed fully mathematically modelable evolutions, with polynomial curves of order 2 (Vrigneau et al., 2019). When we study the wines from the musts taken after each change in pressure of 200 mBars, i.e. 22 to 28 samples for the entire pressing cycle, we observe that there is in fact a relative stability of the parameters throughout the squeeze and that the most marked changes are essentially observed after a stage of depressurisation and pomace reworking. These observations, never published to our knowledge, show the interest of juice separation after a significant change in grape juice quality instead of juice separation based solely on volumetric rules. These results lead us to reconsider how to separate the “Cuvée” and the “Tailles”. For catechins/epicatechins and GRP, the concentrations increase considerably at the beginning of each squeeze before decreasing, once the juices that have undergone the oxidative shock linked to the decompaction of the pomace are extracted. Other compounds such as protocatechuic or cis-coutaric acids increase throughout the pressing process, in a rather regular way. Finally, compounds such as trans-coutaric and caftatir acids show maximum levels well before the end of pressing. We can therefore see that the content and composition of the phenolic compounds evolve quite differently from those observed in the usual oenological analyses.
As a conclusion, this study brings a greater understanding of Pinot noir and Pinot meunier wine on their phenolic compositions and colour changes all along the press cycle. These results could be a good tool for winemakers to decide how to separate the grape juice
fractions during the pressing cycle to produce different styles of wines with different sensory qualities and aging potential.

References

Vrigneau C., Salmon T., Soufyani Y., Robillard B., Bécard B., Liu P-H., Heredia Mira F. J., Trosset J-Y., Marchal R. Impact of press fractioning on Pinot noir and Pinot meunier grape juice and wine compositions and colour. 11th International symposium of Enology (Œno2019) – 11th edition of In Vino Analytica Scientia symposium (IVAS 2019), June 25-28, 2019, Bordeaux, France.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Marchal Richard1, Vrigneau Céline2, Salmon Thomas1, Robillard Bertrand2 and Jourdes Michaël3

1University of Reims – Laboratory of Oenology, University of Haute-Alsace
2Institut Oenologique de Champagne, Epernay, France
3UMR Œnology (OENO), UMR 1366, ISVV, Université de Bordeaux-INRAE-Bordeaux INP, F33882 Villenave d’Ornon, France

Contact the author

Keywords

Press fractioning, wine, phenolic compounds, sparkling base wine, colour

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

EFFECTS OF DIFFERENT PRUNING TYPES ON CHARENTE UGNI BLANC GRAPE AND WINE QUALITY

Since the use of sodium arsenite was banned in 2001, Grapevine Trunk Diseases (GTDs) have become even more widespread increasing (1).To avoid pathogen entry, pruning, an age-old practice, is increa- singly coming to the fore. As the vine is a liana (2), any excessive woody proliferation has to be stopped. This can preserve grapevine life, provided it does not damage the diaphragm.

Aromatic complexity in Verdicchio wines: a case study

In this video recording of the IVES science meeting 2021, Fulvio Mattivi (Fondazione Edmund Mach, Centro Ricerca ed Innovazione, San Michele all’Adige, Italy) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.

Characterization of winegrape berries’ composition on sorting tables using hyperspectral imaging and AI

Comprehensive evaluation of grape composition at winery receiving areas often requires multiple measurements to ensure representativeness, as well as the use of analytical techniques that are time-consuming and involve sample preparation.

Impact assessment of the reverse osmosis technique in wine alcohol management

Wine authenticity and composition can be influenced by a range of membrane separation processes as reverse osmosis. In the context of climate change, the natural trend is to obtain wines with higher alcoholic concentration when classical winemaking methods are employed, and this may induce alteration of typicity of wines by masking the olfactory and taste properties. This study aimed to evaluate the influence of reverse osmosis techniques used for decrease of ethanol content on the stable isotopic ratios as markers for wine authenticity characteristics.

Non-Saccharomyces yeast nitrogen consumption and metabolite production during wine fermentation

Over the last decade, the use of non-Saccharomyces yeasts in the winemaking process has been re-assessed and accepted by winemakers. These yeasts can be used to achieve specific objectives such as lowering the ethanol content, preventing wine spoilage and increasing the production of specific aroma compounds. Since these species are unable to complete alcoholic fermentation, strategies of co- and sequential inoculation of non-Saccharomyces and Saccharomyces cerevisiae have been developed. However, when mixed starter cultures are used, several parameters (e.g. strain yeast, inoculation timing and nutrient competitions) impact the growth of the individual yeasts, the fermentation kinetics and the metabolites/aroma production. In particular, competition for nitrogen compounds could have a major impact, potentially leading to sluggish fermentation when the yeast assimilable nitrogen (YAN) availability is low. Moreover, many aroma compounds produced by the yeasts are directly produced and influenced by nitrogen metabolism such as higher alcohols, acetate esters and ethyl esters which participate in the organoleptic complexity of wine.