IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Abstract

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

A total of 100 samples of commercial wines were analysed including 57 red wines and 43 white. The analysis was carried out in a Waters Acquity UHPLC (Milford, Massachusetts, USA) coupled to a Waters Xevo TQ (Milford, Massachusetts, USA) triple quadrupole mass spectrometer. The MassLynx MS software was used. The column used was an Acquity UPLC BEH C18. The chromatographic conditions consisted of two mobile phases, water with 0.2% acetic acid (A) and acetonitrile (B), with a gradient elution programmed.

This analytical method was validated following AOAC instructions (AOAC 2012). Linearity, LOD, LOQ, intermediate accuracy, repeatability and matrix effects were the parameters assessed.  Calibration standards were prepared for each analytical batch and three replicates were determined at different concentrations for each compound with 7 degrees of linearity.

Linearity values were calculated through the correlation coefficient (R2) of the curves obtained for each compound. The detection limits were calculated based on the standard deviation of the response and the slope (Ich, 2005).

The intermediate precision was calculated measuring standard deviation (RSD) in a set of three concentrations (LOQ, 10x LOQ and 100x LOQ ng mL−1) for 5 days with 6 replicates per concentration. Repeatability was assessed in a single day-long work session, with six replicates of each concentration.

The matrix effect was tested in a wine synthetic matrix by spiking with the same standard
solution as described above. The slopes resulting from the spiked matrix and calibration solutions (acetonitrile 10% v/v) in the linear range were used to evaluate the matrix effect.

In order to elucidate the effect that filtration caused on the compounds, most usual filters such as nylon (NY), polytetrafluoroethylene (PTFE) and cellulose acetate (CA) were tested. In the case of hydroxytyrosol the LOD was 0.052 ng mL−1 and LOQ 0.157 ng mL-1. For tyrosol, LOD 13,020 and LOQ 39,455 ng mL -1. Tyrosine, LOD 1,567 and LOQ 4,748 ng mL−1 and hydroxyphenylpyruvic acid, LOD 6,795 and LOQ 20,591 ng mL-1. All the values had an R2 between 0.9991 and 0.9999, showing quite good linearity. As we know, this is the first study available in which all the compound of the formation route for hydroxytyrosol has been identified and quantified. This could be accomplished thanks to a validated HRM method developed specifically to diminish LOD and LOQ. Furthermore, we ascertained the differences in the content of hydroxytyrosol in a great range of Spanish wines.

References

AOAC (2012) Appendix F: guidelines for Standard Method Performance
Requirements (SMPR). AOAC Official methods of analysis.
Ich (2005). ICH Topic Q2 (R1) Validation of analytical procedures: Text and methodology. International Conference on Harmonization, 1994 (November 1996), 17.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

González-Ramírez Marina1, Valero Eva2, Cerezo Ana B.1, Troncoso Ana M.1 and Garcia-Parrilla M. Carmen1

1Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla
2Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain

Contact the author

Keywords

hydroxytyrosol, wine, UHPLC, mass spectrometry, tyrosine.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effects of graft quality on growth and grapevine-water relations

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L.

RED WINE AGING THROUGH 1H-NMR METABOLOMICS

Premium red wines are often aged in oak barrel. This widespread winemaking process is used, among others, to provide roundness and complexity to the wine. The study of wine evolution during barrel aging is crucial to better ensure control of wine quality.
¹H-NMR has already been proved to be an efficient tool to monitor winemaking process [1]. Indeed, it is a non-destructive technique, it requires a small amount of sample and a short time of analysis, yet it provides clues about several chemical families.

A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Rapid measurement of phenolic quality as a useful tool for viticultural zoning

Un des principaux objectifs du zonage viticole est l’individuation des zones plus indiquées à la production de vins de haute qualité en relation aux cépages. Ceperrlant depuis beaucqup d’années, entre les paramètres de qualité du raisin, on n’a pas considéré les substances phénoliques par effet de l!l difficulté d’analyse en temps rapides.

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].