IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Abstract

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

A total of 100 samples of commercial wines were analysed including 57 red wines and 43 white. The analysis was carried out in a Waters Acquity UHPLC (Milford, Massachusetts, USA) coupled to a Waters Xevo TQ (Milford, Massachusetts, USA) triple quadrupole mass spectrometer. The MassLynx MS software was used. The column used was an Acquity UPLC BEH C18. The chromatographic conditions consisted of two mobile phases, water with 0.2% acetic acid (A) and acetonitrile (B), with a gradient elution programmed.

This analytical method was validated following AOAC instructions (AOAC 2012). Linearity, LOD, LOQ, intermediate accuracy, repeatability and matrix effects were the parameters assessed.  Calibration standards were prepared for each analytical batch and three replicates were determined at different concentrations for each compound with 7 degrees of linearity.

Linearity values were calculated through the correlation coefficient (R2) of the curves obtained for each compound. The detection limits were calculated based on the standard deviation of the response and the slope (Ich, 2005).

The intermediate precision was calculated measuring standard deviation (RSD) in a set of three concentrations (LOQ, 10x LOQ and 100x LOQ ng mL−1) for 5 days with 6 replicates per concentration. Repeatability was assessed in a single day-long work session, with six replicates of each concentration.

The matrix effect was tested in a wine synthetic matrix by spiking with the same standard
solution as described above. The slopes resulting from the spiked matrix and calibration solutions (acetonitrile 10% v/v) in the linear range were used to evaluate the matrix effect.

In order to elucidate the effect that filtration caused on the compounds, most usual filters such as nylon (NY), polytetrafluoroethylene (PTFE) and cellulose acetate (CA) were tested. In the case of hydroxytyrosol the LOD was 0.052 ng mL−1 and LOQ 0.157 ng mL-1. For tyrosol, LOD 13,020 and LOQ 39,455 ng mL -1. Tyrosine, LOD 1,567 and LOQ 4,748 ng mL−1 and hydroxyphenylpyruvic acid, LOD 6,795 and LOQ 20,591 ng mL-1. All the values had an R2 between 0.9991 and 0.9999, showing quite good linearity. As we know, this is the first study available in which all the compound of the formation route for hydroxytyrosol has been identified and quantified. This could be accomplished thanks to a validated HRM method developed specifically to diminish LOD and LOQ. Furthermore, we ascertained the differences in the content of hydroxytyrosol in a great range of Spanish wines.

References

AOAC (2012) Appendix F: guidelines for Standard Method Performance
Requirements (SMPR). AOAC Official methods of analysis.
Ich (2005). ICH Topic Q2 (R1) Validation of analytical procedures: Text and methodology. International Conference on Harmonization, 1994 (November 1996), 17.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

González-Ramírez Marina1, Valero Eva2, Cerezo Ana B.1, Troncoso Ana M.1 and Garcia-Parrilla M. Carmen1

1Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla
2Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain

Contact the author

Keywords

hydroxytyrosol, wine, UHPLC, mass spectrometry, tyrosine.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of chitosan treatment on the physico-chemical features of a sangiovese red wine

Chitosan is gaining interest in red winemaking thanks to its ability to inhibit the development of Brettanomyces spp. yeast, or other undesired wine microbial threats. However, little is known about potential side-effects of its addition on the physico-chemical parameters of red wines.

Response to powdery and downy mildew of varieties with disease resistance genes (PIWI)

Erysiphe necator and Plasmopara viticola are the causal agents of powdery and downy mildew on grapevines, leading to significant economic losses. Numerous chemical treatments are applied to control these diseases, leading to environmental problems and the appearance of resistance to these products. Therefore, the study of new strategies to achieve the objectives of sustainable development is a priority. In this sense, the use of new varieties resistant to these diseases may be an option of interest. The objective of this work was to analyze the degree of resistance of 9 varieties with downy mildew resistance genes (Rpv3 and/or Rpv12), four of which also carry a powdery mildew resistance gene (Ren 1) by in vitro inoculation assays.

Electrochemical approaches in wine analysis 

There is a high demand in the wine industry for analytical methods able to provide useful information to support the decision-making process in the vineyard and in the winery. Ideally these methods should be rapid (e.g.

Key odorants of french syrah wines from the northern rhone valley

Little research has been undertaken to investigate the main contributors to the aroma of Syrah wines from the cool northern part of the Rhone valley despite the historical importance of this cultivar for this wine region. The aim of the present work was to study the key odorants of Crozes-Hermitage wines made

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.