IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Abstract

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

A total of 100 samples of commercial wines were analysed including 57 red wines and 43 white. The analysis was carried out in a Waters Acquity UHPLC (Milford, Massachusetts, USA) coupled to a Waters Xevo TQ (Milford, Massachusetts, USA) triple quadrupole mass spectrometer. The MassLynx MS software was used. The column used was an Acquity UPLC BEH C18. The chromatographic conditions consisted of two mobile phases, water with 0.2% acetic acid (A) and acetonitrile (B), with a gradient elution programmed.

This analytical method was validated following AOAC instructions (AOAC 2012). Linearity, LOD, LOQ, intermediate accuracy, repeatability and matrix effects were the parameters assessed.  Calibration standards were prepared for each analytical batch and three replicates were determined at different concentrations for each compound with 7 degrees of linearity.

Linearity values were calculated through the correlation coefficient (R2) of the curves obtained for each compound. The detection limits were calculated based on the standard deviation of the response and the slope (Ich, 2005).

The intermediate precision was calculated measuring standard deviation (RSD) in a set of three concentrations (LOQ, 10x LOQ and 100x LOQ ng mL−1) for 5 days with 6 replicates per concentration. Repeatability was assessed in a single day-long work session, with six replicates of each concentration.

The matrix effect was tested in a wine synthetic matrix by spiking with the same standard
solution as described above. The slopes resulting from the spiked matrix and calibration solutions (acetonitrile 10% v/v) in the linear range were used to evaluate the matrix effect.

In order to elucidate the effect that filtration caused on the compounds, most usual filters such as nylon (NY), polytetrafluoroethylene (PTFE) and cellulose acetate (CA) were tested. In the case of hydroxytyrosol the LOD was 0.052 ng mL−1 and LOQ 0.157 ng mL-1. For tyrosol, LOD 13,020 and LOQ 39,455 ng mL -1. Tyrosine, LOD 1,567 and LOQ 4,748 ng mL−1 and hydroxyphenylpyruvic acid, LOD 6,795 and LOQ 20,591 ng mL-1. All the values had an R2 between 0.9991 and 0.9999, showing quite good linearity. As we know, this is the first study available in which all the compound of the formation route for hydroxytyrosol has been identified and quantified. This could be accomplished thanks to a validated HRM method developed specifically to diminish LOD and LOQ. Furthermore, we ascertained the differences in the content of hydroxytyrosol in a great range of Spanish wines.

References

AOAC (2012) Appendix F: guidelines for Standard Method Performance
Requirements (SMPR). AOAC Official methods of analysis.
Ich (2005). ICH Topic Q2 (R1) Validation of analytical procedures: Text and methodology. International Conference on Harmonization, 1994 (November 1996), 17.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

González-Ramírez Marina1, Valero Eva2, Cerezo Ana B.1, Troncoso Ana M.1 and Garcia-Parrilla M. Carmen1

1Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla
2Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain

Contact the author

Keywords

hydroxytyrosol, wine, UHPLC, mass spectrometry, tyrosine.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

La zonazione viticola e i compiti dell’amministrazione regionale

Solo attraverso un adeguato intervento di estirpazione e reimpianto dei vigneti è possibile preservare, adeguare e valorizzare il patrimonio viticolo e le produzioni che da esso derivano. Il reimpianto dei vigneti è pertanto da intendersi come una normale pratica agricola, alla pari della rimonta di stalla in campo zootecnico, ma può assumere toni problematici quando, come si verifica adesso in Toscana per una serie di circostanze legate alla profonda trasfor­mazione della viticoltura avvenuta negli ultimi 30 anni, troppi impianti giungono contem­poraneamente a fine ciclo produttivo e devono essere rinnovati.

Designing and managing a sustainable vineyard in a climate change scenario

Extension of the growing season, compression of the annual growth cycle and higher frequency and severity of weather extreme events are consistent features of global warming. While mitigation of factors causing global warming is necessary in the medium-long term, wine growers need “ready to go” adaptation practices to counteract negative effects bound to climate change. This must be done in a sustainably way, meaning that remunerative yield, desired grape quality, low production cost and environment friendly solutions must be effectively merged. In this work, we will review contribution given over the last two decades prioritizing issues related to scion and rootstock choice, changes in vineyard floor management, new perception related to the use of irrigation in vineyards, adaptation practices aimed at decompress maturity, solutions to counteract or minimize damages due to late frost and sunburn and, lastly, some hints on how precision viticulture can help with all of this.

Effect of Candida zemplinina oak chips biofilm on wine aroma profile

Candida zemplinina (synonym Starmerella bacillaris) is frequently isolated in grape must in different vitivinicultural areas. The enological significance of C. zemplinina strains used in combination with S. cerevisiae has been demonstrated, being wines produced by the above-mixed starter, characterized by higher amounts of glycerol and esters.

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).