IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Abstract

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

A total of 100 samples of commercial wines were analysed including 57 red wines and 43 white. The analysis was carried out in a Waters Acquity UHPLC (Milford, Massachusetts, USA) coupled to a Waters Xevo TQ (Milford, Massachusetts, USA) triple quadrupole mass spectrometer. The MassLynx MS software was used. The column used was an Acquity UPLC BEH C18. The chromatographic conditions consisted of two mobile phases, water with 0.2% acetic acid (A) and acetonitrile (B), with a gradient elution programmed.

This analytical method was validated following AOAC instructions (AOAC 2012). Linearity, LOD, LOQ, intermediate accuracy, repeatability and matrix effects were the parameters assessed.  Calibration standards were prepared for each analytical batch and three replicates were determined at different concentrations for each compound with 7 degrees of linearity.

Linearity values were calculated through the correlation coefficient (R2) of the curves obtained for each compound. The detection limits were calculated based on the standard deviation of the response and the slope (Ich, 2005).

The intermediate precision was calculated measuring standard deviation (RSD) in a set of three concentrations (LOQ, 10x LOQ and 100x LOQ ng mL−1) for 5 days with 6 replicates per concentration. Repeatability was assessed in a single day-long work session, with six replicates of each concentration.

The matrix effect was tested in a wine synthetic matrix by spiking with the same standard
solution as described above. The slopes resulting from the spiked matrix and calibration solutions (acetonitrile 10% v/v) in the linear range were used to evaluate the matrix effect.

In order to elucidate the effect that filtration caused on the compounds, most usual filters such as nylon (NY), polytetrafluoroethylene (PTFE) and cellulose acetate (CA) were tested. In the case of hydroxytyrosol the LOD was 0.052 ng mL−1 and LOQ 0.157 ng mL-1. For tyrosol, LOD 13,020 and LOQ 39,455 ng mL -1. Tyrosine, LOD 1,567 and LOQ 4,748 ng mL−1 and hydroxyphenylpyruvic acid, LOD 6,795 and LOQ 20,591 ng mL-1. All the values had an R2 between 0.9991 and 0.9999, showing quite good linearity. As we know, this is the first study available in which all the compound of the formation route for hydroxytyrosol has been identified and quantified. This could be accomplished thanks to a validated HRM method developed specifically to diminish LOD and LOQ. Furthermore, we ascertained the differences in the content of hydroxytyrosol in a great range of Spanish wines.

References

AOAC (2012) Appendix F: guidelines for Standard Method Performance
Requirements (SMPR). AOAC Official methods of analysis.
Ich (2005). ICH Topic Q2 (R1) Validation of analytical procedures: Text and methodology. International Conference on Harmonization, 1994 (November 1996), 17.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

González-Ramírez Marina1, Valero Eva2, Cerezo Ana B.1, Troncoso Ana M.1 and Garcia-Parrilla M. Carmen1

1Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla
2Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain

Contact the author

Keywords

hydroxytyrosol, wine, UHPLC, mass spectrometry, tyrosine.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Non-invasive quantification of phenol content during red wine fermentations

Phenolic compounds are responsible for the most important red wine quality attributes. Anthocyanins and tannins play crucial roles in color and mouthfeel properties of red wines. Phenolic analysis in the winery is hindered by analytical constrains.

Highlighting a link between the structure of mannoproteins and their foaming properties in sparkling wines

Effervescence and foaming properties are the main visual characteristics assessed by the consumer during
sparkling wine tasting.

Green berries on Gewürztraminer (Vitis vinifera L.) in South Tyrol (Italy)

The grape variety Gewürztraminer is known to be affected by two physiological disorders namely berry shrivel and bunch stem necrosis. During the season 2014 we noticed a new symptomatology type of ripening disorder on the variety. The new symptom showed not all berries fallowing the normal maturation stages, but single berries remaining at a soft but green stage till harvest. The broad distribution of these so called “green berries” symptoms in different production sites of our region, caused huge damage due to the difficulty of eliminating single berries per bunch before harvesting. Therefore, the Research Centre Laimburg began to investigate the reasons and origins of this new symptom. This work shows the results of first attempts to find causes for the symptom as well as the resulting approach to mitigate symptoms. Applications of magnesium leaf fertilizer showed first promising results against this putative disorder. To study the causal effect of the green berries 30 symptomatic vineyards in 2014 have been selected for a monitoring during the season 2016. To evaluate the foliar nutrient treatment two vineyards have been selected for application of magnesium sulfate and magnesium chloride. Leaf and berry nutrient analysis, as well as the main quality parameters during ripening have been performed. As soon as “green berries” symptoms appeared, incidence and severity have been evaluated. Most of the symptomatic vineyards of the 2016 monitoring showed light to clear magnesium deficit symptoms on their foliage. Only during the seasons 2020 and 2021 “green berries” symptoms could be found in the leaf fertilizer treatment vineyards. Both seasons showed a significant effect of the magnesium treatments to reduce the incidence and severity of the symptom. It seems that the appearance of the “green berries” symptom on Gewürztraminer is correlated to a disturbed uptake of magnesium of the vines.

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.