IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

Abstract

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds. The analytical determination was performed using external calibration curves with 10 points, which were freshly prepared at every analytical session. Potential intermediates in the synthesis of MEL are detected as labelled metabolites following a time sequence that fits with the pathway described for the synthesis of MEL in mammals. At day 3 all the initial 15N2 L-TRP has been consumed. However, L-TRP as such was detected despite it was not added to the fermentation medium, thus demonstrating de novo tryptophan formation which can be used to synthetize MEL thereafter. Similarly, the results obtained in the fermentation carried out with 13-C TYR verify that HT is formed both from labelled tyrosine and from intermediates of the Erlich pathway.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Troncoso Ana M.1, Gallardo-Fernández Marta1, Valls-Fonayet Josep2, Valero Eva3, Hornedo-Ortega Ruth1, Richard Tristan2 and García-Parrilla M Carmen1 

1Universidad de Sevilla
2Université de Bordeaux
3Universidad Pablo de Olavide

Contact the author

Keywords

yeast, alcoholic fermentation, bioactive compounds, isotopically labelled compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies

Preliminary results of the effect of post veraison pre-pruning on grape and wine composition in Tannat and Merlot

The seasonal’s climatic conditions determine the composition of grapes at harvest as they affect the vine’s physiology and development. High temperatures during the grape ripening period cause a high accumulation of sugars and degradation of fruit acidity ,and alter the synthesis of polyphenols. Therefore, some vineyard management can be applied in order to modify grapevine impact on climate variability. One example is the pre-pruning at the beginning of grape ripening, which can delay the ripening period and modify the composition of the grapes at harvest. This work aims to evaluate the pre-pruning field technique on yield components and alcohol content in wines of Tannat and Merlot varieties.

Toasting and grain effect on Tempranillo red wine aged in Quercus petraea barrels

The barrel-making process is widely recognized as a crucial practice that affects the composition of barrel-aged wine. After the drying process, the staves are considered ready for barrel assembly, which includes the processes of bending and toasting the barrel structure. Toasting is considered one of the most critical stages in determining the physical and chemical composition of the staves, which can influence the chemical and sensory composition of the wine aged in barrels made from them [1].

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate.

Yield prediction assessment before bloom and at veraison in a cv. Airén high yielding vineyard in Toledo (La Mancha, Spain)

Anticipation in the possible responses of grapevines to environmental variations is key to adjust field work in view of a more effective management. This idea has been the driving force behind the current work, which seeks to understand the interaction patterns of the vine with its habitat throughout the growing cycle.