IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

Abstract

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds. The analytical determination was performed using external calibration curves with 10 points, which were freshly prepared at every analytical session. Potential intermediates in the synthesis of MEL are detected as labelled metabolites following a time sequence that fits with the pathway described for the synthesis of MEL in mammals. At day 3 all the initial 15N2 L-TRP has been consumed. However, L-TRP as such was detected despite it was not added to the fermentation medium, thus demonstrating de novo tryptophan formation which can be used to synthetize MEL thereafter. Similarly, the results obtained in the fermentation carried out with 13-C TYR verify that HT is formed both from labelled tyrosine and from intermediates of the Erlich pathway.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Troncoso Ana M.1, Gallardo-Fernández Marta1, Valls-Fonayet Josep2, Valero Eva3, Hornedo-Ortega Ruth1, Richard Tristan2 and García-Parrilla M Carmen1 

1Universidad de Sevilla
2Université de Bordeaux
3Universidad Pablo de Olavide

Contact the author

Keywords

yeast, alcoholic fermentation, bioactive compounds, isotopically labelled compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

How to make a mineral wine? Producers’ representations vs. scientific data

In this video recording of the IVES science meeting 2023, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, Dijon, France) speaks on how to make a mineral wine, producers’ representations vs. scientific data. This presentation is based on an original article accessible for free on OENO One.

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.

Starmerella bacillaris grape treatment as a sustainable approach to manage Botrytis cinerea during the withering process

Growing concerns over the environmental and health risks posed by chemical pesticides have highlighted the need to reduce their use in the agri-food sector.

Bioclimatic shifts and land use options for Viticulture in Portugal

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS)

Apoplastic pH influences Vitis vinifera Barbera recovery responses to short and prolonged drought 

Alteration of sap pH is one of the first chemical changes that occurs within the xylem vessels of plants exposed to drought. Xylem sap acidification accompanied by the accumulation of soluble sugars has been recently documented in several species (Sharp and Davis, 2009; Secchi and Zwieniecki, 2016). Here, Vitis vinifera plants of the anysohydric cultivar Barbera were exposed to either short (no irrigation; SD) or to prolonged drought (continual reduction of 10% water; PD). When comparable severe stress was reached, the potted grapes were re-watered. SD was characterized by fast (2–3 days) stomatal closure and high abscisic acid (ABA) accumulation in xylem sap (>400 μg L−1) and in leaf. In PD plants, the rise in ABA levels was considerably diminished.