IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Valorization of wine lees for oenological interest by eco-responsible processes

Valorization of wine lees for oenological interest by eco-responsible processes

Abstract

Wine lees are the second most important wine by-product in terms of quantity after grape stalk and marc. During aging on lees, it is well known that wine lees yield compounds that act as antioxydant. However the chemical nature of the compounds involved in this behavior (except polyphenols and glutathione) has not yet been totally elucidated. The scarce knowledge of wine lees composition and their potential exploitation make them a promising candidate to obtain new antioxidant products to be used in winemaking. In this study, an eco-sustainable approach to obtain lees extracts exhibiting antioxidant capacity is proposed. Such extracts could be used in a global enological strategy of sulfites level reduction.

During this work, lees extraction has been carried out with conventional solvent and subcritical water extraction. The solid/liquid ratio and the influence of extraction duration were studied for each solvent. The total composition of lees extracts was assessed. Proteins, lipids, polysaccharides, polyphenols, and glutathione analyses were performed by spectrophotometry and HPLC. Antioxidant capacity of each extracts was evaluated by three methods: the ability of antioxidants to scavenge a radical by DPPH, ferric reducing antioxidant power by FRAP and Oxygen Consumption rate (OCR) by direct oxygen consumption measurement.
Results show an important effect of operational conditions, solvent and matrice on the diversity of extracts in terms of composition and bioactivity. For the first time, an eco-sustainable process has been proposed for the valorization of white wine lees to obtain extracts with high antioxidant activity. The extracts antioxidant capacity is promising to their target application in vinification as well as in food industry in order to reduce doses of sulfites.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Poulain Benjamin1 and Nioi Claudia1

1Université de Bordeaux, Unité de Recherche Œnologie EA 4577

Contact the author

Keywords

Wine lees, By-product, antioxydant, extraction

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

La balance hydrique explique davantage la diversité intravariétale du titre alcoométrique du Merlot que l’accumulation des sucres

Dans le cadre de TerclimPro 2025, Charles Romieu a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8506

Classification and prediction of tannin botanical origin through voltammetry and machine learning approach

The classification of enological tannins has gained importance following the OIV’s requirement to include their botanical origin on product labels (OIV-OENO 624-2022).

Can grapevine intra-varietal genetic variability be a tool for climate change adaptation? A case study at a hot and dry environment

Climate change projections point to an increase of temperatures and changes in rainfall patterns in the mediterranean region.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.