IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Valorization of wine lees for oenological interest by eco-responsible processes

Valorization of wine lees for oenological interest by eco-responsible processes

Abstract

Wine lees are the second most important wine by-product in terms of quantity after grape stalk and marc. During aging on lees, it is well known that wine lees yield compounds that act as antioxydant. However the chemical nature of the compounds involved in this behavior (except polyphenols and glutathione) has not yet been totally elucidated. The scarce knowledge of wine lees composition and their potential exploitation make them a promising candidate to obtain new antioxidant products to be used in winemaking. In this study, an eco-sustainable approach to obtain lees extracts exhibiting antioxidant capacity is proposed. Such extracts could be used in a global enological strategy of sulfites level reduction.

During this work, lees extraction has been carried out with conventional solvent and subcritical water extraction. The solid/liquid ratio and the influence of extraction duration were studied for each solvent. The total composition of lees extracts was assessed. Proteins, lipids, polysaccharides, polyphenols, and glutathione analyses were performed by spectrophotometry and HPLC. Antioxidant capacity of each extracts was evaluated by three methods: the ability of antioxidants to scavenge a radical by DPPH, ferric reducing antioxidant power by FRAP and Oxygen Consumption rate (OCR) by direct oxygen consumption measurement.
Results show an important effect of operational conditions, solvent and matrice on the diversity of extracts in terms of composition and bioactivity. For the first time, an eco-sustainable process has been proposed for the valorization of white wine lees to obtain extracts with high antioxidant activity. The extracts antioxidant capacity is promising to their target application in vinification as well as in food industry in order to reduce doses of sulfites.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Poulain Benjamin1 and Nioi Claudia1

1Université de Bordeaux, Unité de Recherche Œnologie EA 4577

Contact the author

Keywords

Wine lees, By-product, antioxydant, extraction

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Whole bunch fermentation: adding complexity, or just making ‘green’ wine?

Certain grape varieties contain negligible levels of isobutyl methoxypyrazine (IBMP) in grapes. However, it has long been known that grape stems

Novel biorefinery step for grape marc valorisation: polysaccharides extraction by subcritical water

The exploitation of food by-products has garnered significant attention over the past few decades, particularly within the framework of the European Green Deal.

Development of spectral indices to monitoring non-destructive of ripeness for water stressed grapevine (Vitis vinifera L.) using contour map optimization

Accurate and non-destructive monitoring of grape ripening is essential for optimising harvest decisions, particularly under water stress conditions.

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.

Vineyard microclimate alterations induced by black mulch through transcriptome reshaped the flavoromics of Cabernet Sauvignon

To alter the vineyard microclimate and produce quality wine under a semi-arid climate, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017). The grapes were sampled at three growing stages to conduct the untargeted metabolome and transcriptome analysis. The upregulated genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered severe heat stress, resulting in lower sugar and higher acids at harvest. The integration of metabolome and transcriptome analysis identified the key genes responsible for the enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes and norisoprenoids concentrations in M grapes.