IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Valorization of wine lees for oenological interest by eco-responsible processes

Valorization of wine lees for oenological interest by eco-responsible processes

Abstract

Wine lees are the second most important wine by-product in terms of quantity after grape stalk and marc. During aging on lees, it is well known that wine lees yield compounds that act as antioxydant. However the chemical nature of the compounds involved in this behavior (except polyphenols and glutathione) has not yet been totally elucidated. The scarce knowledge of wine lees composition and their potential exploitation make them a promising candidate to obtain new antioxidant products to be used in winemaking. In this study, an eco-sustainable approach to obtain lees extracts exhibiting antioxidant capacity is proposed. Such extracts could be used in a global enological strategy of sulfites level reduction.

During this work, lees extraction has been carried out with conventional solvent and subcritical water extraction. The solid/liquid ratio and the influence of extraction duration were studied for each solvent. The total composition of lees extracts was assessed. Proteins, lipids, polysaccharides, polyphenols, and glutathione analyses were performed by spectrophotometry and HPLC. Antioxidant capacity of each extracts was evaluated by three methods: the ability of antioxidants to scavenge a radical by DPPH, ferric reducing antioxidant power by FRAP and Oxygen Consumption rate (OCR) by direct oxygen consumption measurement.
Results show an important effect of operational conditions, solvent and matrice on the diversity of extracts in terms of composition and bioactivity. For the first time, an eco-sustainable process has been proposed for the valorization of white wine lees to obtain extracts with high antioxidant activity. The extracts antioxidant capacity is promising to their target application in vinification as well as in food industry in order to reduce doses of sulfites.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Poulain Benjamin1 and Nioi Claudia1

1Université de Bordeaux, Unité de Recherche Œnologie EA 4577

Contact the author

Keywords

Wine lees, By-product, antioxydant, extraction

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

Evolution of the crown procyanidins during wine making and aging in bottle

Condensed tannins are widely distributed in plant‐derived foods and beverages like grape, red wine, nuts, tea, apples and chocolate in which they contribute to multiple sensorial properties such as flavor, color, and taste (astringency and bitterness). During the wine making process,

Historical zoning in the world

The study of the interaction between vineyards and the environment to establish the grapevines in the appropriate places has been applied in wine science for 5000 years. Advances in the field of the zoning have not been uniform in time, and have occupied a preferential place in the contributions of Roman writers of the 1st Century AC, the contemplations of Tokay (1700) and Porto (1756) and works of the second half of the 20th century. Zoning practices today integrate multidisciplinary methodologies (viticulture, enology, soils, climatology, cartography, statistics, computer science) and require further development for future application.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

What triggers the decision to ripen 

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening.