IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Abstract

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2 The phenolic potential of the grape is directly related to wine organoleptic properties, among which color and astringency outstand. It also conditions the winemaking process and the ability of a wine to undergo ageing. More recently, the role that the vegetation around the vineyard can play in supplying ecosystem services beneficial to grape production and quality is beginning to be considered. Given the absence of previous studies, this present work aims at studying the influence that this vineyard’s surrounding vegetation can exert on the phenolic potential of red Vitis vinifera L. cv Tempranillo grapes, grown in two vineyards surrounded by uncultivated and naturalized lands belonging to two different “Denominaciones de Origen” (DO Toro and DO Ribera de Duero). In both vineyards, grapes were harvested at the same date from different sampling points selected according to the distance to vegetation. Differences in the grape maturity status that might be due to their location in the vineyard were assessed by the determination of harvest parameters (pH of the must, titrable acidity and sugar content-°Brix). Furthermore, differences in the phenolic potential that might be influenced by the distance from the vegetation around the vineyard were studied. To be precise, total polyphenol index (TPI), color intensity (CI) and hue were evaluated by UV-vis spectrometry and the detailed flavonol, flavanol and anthocyanin compositions of grape skins and the flavanol composition of grape seeds were analyzed by means of HPLC-DAD-MSn.3
Regarding harvest parameters, a clear relationship between distance to the surrounding vegetation and technological maturity could be observed for DO Toro grapes, whereas it was less remarkable for DO Ribera de Duero grapes. TPI did not seem to be affected by the location of the grapevine, whereas CI were greater in the samples collected in the vines nearer to the surrounding vegetation. Regarding flavonoid compositions, different behaviors were observed for the different types of compounds. The results of this study highlight that the vegetation around the vineyard can influence the phenolic composition of grapes, so this factor should not be neglected when choosing a vineyard to produce quality grapes and wines.

References

[1] Abad, J. et al. (2021). OENO One 2021, 1, 295-312.
[2] Escribano-Bailón, M.T. et al. (2005). Advances in oenological sciences and techniques. Libro de resúmenes de la octava Conferencia de los grupos de investigación en enología, GIENOL’05, p 25-27.
[3] Alcalde-Eon, C. et al. (2019). Food Research International, 126, 108650.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

García-Estévez Ignacio1, Alcalde-Eon Cristina1, Cristobal-Bolanos Lucía1 and Escribano-Bailón M.Teresa1

1Grupo de Investigación en Polifenoles – University of Salamanca

Contact the author

Keywords

surrounding vegetation, anthocyanins, flavanols, flavonols, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Interaction between commercial mannoproteins and phenolic compounds of two red wines from different Portuguese grape cultivars

The interaction between mannoproteins and wine phenolic compounds is a subject of great interest as some studies show the possible impact in color stability and an improvement in the sensory characteristics namely the reduction of red wine astringency.

Sustainable strategies for the management and valorization of wine lees

Wine lees represent an abundant yet largely undervalorised by-product of the winemaking industry.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements. In each condition, the same two wines were blind tasted: a wine previously defined as delicate – a Pinot Noir from Australia, and a wine known for its robust character – a Tannat from Uruguay.

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.