IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Abstract

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2 The phenolic potential of the grape is directly related to wine organoleptic properties, among which color and astringency outstand. It also conditions the winemaking process and the ability of a wine to undergo ageing. More recently, the role that the vegetation around the vineyard can play in supplying ecosystem services beneficial to grape production and quality is beginning to be considered. Given the absence of previous studies, this present work aims at studying the influence that this vineyard’s surrounding vegetation can exert on the phenolic potential of red Vitis vinifera L. cv Tempranillo grapes, grown in two vineyards surrounded by uncultivated and naturalized lands belonging to two different “Denominaciones de Origen” (DO Toro and DO Ribera de Duero). In both vineyards, grapes were harvested at the same date from different sampling points selected according to the distance to vegetation. Differences in the grape maturity status that might be due to their location in the vineyard were assessed by the determination of harvest parameters (pH of the must, titrable acidity and sugar content-°Brix). Furthermore, differences in the phenolic potential that might be influenced by the distance from the vegetation around the vineyard were studied. To be precise, total polyphenol index (TPI), color intensity (CI) and hue were evaluated by UV-vis spectrometry and the detailed flavonol, flavanol and anthocyanin compositions of grape skins and the flavanol composition of grape seeds were analyzed by means of HPLC-DAD-MSn.3
Regarding harvest parameters, a clear relationship between distance to the surrounding vegetation and technological maturity could be observed for DO Toro grapes, whereas it was less remarkable for DO Ribera de Duero grapes. TPI did not seem to be affected by the location of the grapevine, whereas CI were greater in the samples collected in the vines nearer to the surrounding vegetation. Regarding flavonoid compositions, different behaviors were observed for the different types of compounds. The results of this study highlight that the vegetation around the vineyard can influence the phenolic composition of grapes, so this factor should not be neglected when choosing a vineyard to produce quality grapes and wines.

References

[1] Abad, J. et al. (2021). OENO One 2021, 1, 295-312.
[2] Escribano-Bailón, M.T. et al. (2005). Advances in oenological sciences and techniques. Libro de resúmenes de la octava Conferencia de los grupos de investigación en enología, GIENOL’05, p 25-27.
[3] Alcalde-Eon, C. et al. (2019). Food Research International, 126, 108650.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

García-Estévez Ignacio1, Alcalde-Eon Cristina1, Cristobal-Bolanos Lucía1 and Escribano-Bailón M.Teresa1

1Grupo de Investigación en Polifenoles – University of Salamanca

Contact the author

Keywords

surrounding vegetation, anthocyanins, flavanols, flavonols, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Acumulación de materia seca, orientada a valorar la fijación de carbono, en función del aporte de riego y la pluviometría, en Cabernet-Sauvignon a lo largo de 15 años

The vineyard is capable of fixing carbon in its permanent structure from atmospheric carbon dioxide, through the process of gas exchange and the performance of photosynthesis. The photosynthetic capacity of the vineyard depends on the water resources that the plant may have at its disposal, so the amount of dry matter, derived from the processed photosynthates, that it can store will depend on the water regime of the crop, both in the annually renewable organs as in permanent parts.

Exploring the potential of Hanseniaspora vineae for quality wines production

Traditionally, non-saccharomyces yeasts were deemed undesirable in winemaking, for this reason, it is a common practice to add sulphites to prevent their proliferation during the initial stages of vinification. However, the current research on yeast diversity has unveiled numerous non-saccharomyces strains possessing advantageous traits that enrich the sensory profile of wines. The genus hanseniaspora is often associated with wine fermentation and is also commonly found on grapes.

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Enhancement of the terroir

The terroir is today the most important factor of production and development in the wine sector. In a context where the commercial challenge is taking place all over the place, the distinction between traditional and “new” producing countries is not only a geographical, cultural and technical counter position but also, and above all, a legal one. Indeed, the system of standards present in the “old world” (plantation rights, production decrees, yields per hectare, etc.) which may represent, in the short term on the global market, constraints to development and product innovation must become an opportunity. But threats become opportunities, if we work, from the vine to the market, via communication, more on the elements of difference than on those of affinity.