IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Abstract

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2 The phenolic potential of the grape is directly related to wine organoleptic properties, among which color and astringency outstand. It also conditions the winemaking process and the ability of a wine to undergo ageing. More recently, the role that the vegetation around the vineyard can play in supplying ecosystem services beneficial to grape production and quality is beginning to be considered. Given the absence of previous studies, this present work aims at studying the influence that this vineyard’s surrounding vegetation can exert on the phenolic potential of red Vitis vinifera L. cv Tempranillo grapes, grown in two vineyards surrounded by uncultivated and naturalized lands belonging to two different “Denominaciones de Origen” (DO Toro and DO Ribera de Duero). In both vineyards, grapes were harvested at the same date from different sampling points selected according to the distance to vegetation. Differences in the grape maturity status that might be due to their location in the vineyard were assessed by the determination of harvest parameters (pH of the must, titrable acidity and sugar content-°Brix). Furthermore, differences in the phenolic potential that might be influenced by the distance from the vegetation around the vineyard were studied. To be precise, total polyphenol index (TPI), color intensity (CI) and hue were evaluated by UV-vis spectrometry and the detailed flavonol, flavanol and anthocyanin compositions of grape skins and the flavanol composition of grape seeds were analyzed by means of HPLC-DAD-MSn.3
Regarding harvest parameters, a clear relationship between distance to the surrounding vegetation and technological maturity could be observed for DO Toro grapes, whereas it was less remarkable for DO Ribera de Duero grapes. TPI did not seem to be affected by the location of the grapevine, whereas CI were greater in the samples collected in the vines nearer to the surrounding vegetation. Regarding flavonoid compositions, different behaviors were observed for the different types of compounds. The results of this study highlight that the vegetation around the vineyard can influence the phenolic composition of grapes, so this factor should not be neglected when choosing a vineyard to produce quality grapes and wines.

References

[1] Abad, J. et al. (2021). OENO One 2021, 1, 295-312.
[2] Escribano-Bailón, M.T. et al. (2005). Advances in oenological sciences and techniques. Libro de resúmenes de la octava Conferencia de los grupos de investigación en enología, GIENOL’05, p 25-27.
[3] Alcalde-Eon, C. et al. (2019). Food Research International, 126, 108650.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

García-Estévez Ignacio1, Alcalde-Eon Cristina1, Cristobal-Bolanos Lucía1 and Escribano-Bailón M.Teresa1

1Grupo de Investigación en Polifenoles – University of Salamanca

Contact the author

Keywords

surrounding vegetation, anthocyanins, flavanols, flavonols, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

Phenolic, antioxidant, and sensory heterogeneity of oenological tannins: what are their possible winemaking applications?

AIM: The aim of this work was to characterize 18 oenological tannins by the polyphenolic, antioxidant, and sensory point of view.

Hierarchy of the interactions between physical and biological parameters intervening in the Pyrenean Gascon foothill vineyard

Un travail sur les A.O.C. du piémont pyrénéen occidental permet de construire une hiérarchie de paramètres climatiques, géo-pédologiques, morphologiques, de saisir leurs niveaux d’interaction et d’élaborer une méthodologie pour proposer un zonage

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.