IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Abstract

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2 The phenolic potential of the grape is directly related to wine organoleptic properties, among which color and astringency outstand. It also conditions the winemaking process and the ability of a wine to undergo ageing. More recently, the role that the vegetation around the vineyard can play in supplying ecosystem services beneficial to grape production and quality is beginning to be considered. Given the absence of previous studies, this present work aims at studying the influence that this vineyard’s surrounding vegetation can exert on the phenolic potential of red Vitis vinifera L. cv Tempranillo grapes, grown in two vineyards surrounded by uncultivated and naturalized lands belonging to two different “Denominaciones de Origen” (DO Toro and DO Ribera de Duero). In both vineyards, grapes were harvested at the same date from different sampling points selected according to the distance to vegetation. Differences in the grape maturity status that might be due to their location in the vineyard were assessed by the determination of harvest parameters (pH of the must, titrable acidity and sugar content-°Brix). Furthermore, differences in the phenolic potential that might be influenced by the distance from the vegetation around the vineyard were studied. To be precise, total polyphenol index (TPI), color intensity (CI) and hue were evaluated by UV-vis spectrometry and the detailed flavonol, flavanol and anthocyanin compositions of grape skins and the flavanol composition of grape seeds were analyzed by means of HPLC-DAD-MSn.3
Regarding harvest parameters, a clear relationship between distance to the surrounding vegetation and technological maturity could be observed for DO Toro grapes, whereas it was less remarkable for DO Ribera de Duero grapes. TPI did not seem to be affected by the location of the grapevine, whereas CI were greater in the samples collected in the vines nearer to the surrounding vegetation. Regarding flavonoid compositions, different behaviors were observed for the different types of compounds. The results of this study highlight that the vegetation around the vineyard can influence the phenolic composition of grapes, so this factor should not be neglected when choosing a vineyard to produce quality grapes and wines.

References

[1] Abad, J. et al. (2021). OENO One 2021, 1, 295-312.
[2] Escribano-Bailón, M.T. et al. (2005). Advances in oenological sciences and techniques. Libro de resúmenes de la octava Conferencia de los grupos de investigación en enología, GIENOL’05, p 25-27.
[3] Alcalde-Eon, C. et al. (2019). Food Research International, 126, 108650.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

García-Estévez Ignacio1, Alcalde-Eon Cristina1, Cristobal-Bolanos Lucía1 and Escribano-Bailón M.Teresa1

1Grupo de Investigación en Polifenoles – University of Salamanca

Contact the author

Keywords

surrounding vegetation, anthocyanins, flavanols, flavonols, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Potential application of indigenous Pichia kluyveri for enhanced wine aroma quality

Aims: In previous work, five indigenous Pichia kluyveri strains, GS1-1, FS-2-7, HS-2-1, C730 and C732, were isolated and selected from spontaneous fermented wines from Ningxia and Gansu. The aims of this study were to 1) evaluate resistance of these strains to environmental stressors that may restrict their growth and the progress of alcoholic fermentation; 2) Investigate their fermentation dynamics; 3) Characterise aroma profiles of Cabernet Sauvignon wines made from mixed cultures of P. kluyveri and Saccharomyces cerevisiae.

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

The role of the environmental factor as a component of the terroir in Spain (A.O. Cigales, NW Spain)

The components and the methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al.

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.

Climate change impact study based on grapevine phenology modelling

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties