IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Stability of 3-mercaptohexanol during white wine storage in relationship to must pre-fermentative fining

Stability of 3-mercaptohexanol during white wine storage in relationship to must pre-fermentative fining

Abstract

3-Mercaptohexanol (3MH) is a volatile thiol occurring in several white and red wines, where it can contribute to fruity attributes. Its content is typically high in wines from certain grape varieties, in particular Sauvignon blanc, where it is considered a varietal marker. The strong nucleophilic character of thiols makes 3MH rather unstable during wine storage, due to the presence of several strong electrophilic species. Among these electrophilics, those arising from the oxidation of flavan3-ols such as catechin and epi-catechin have been indicated as critical for 3MH stability. Accordingly, there is a generalized interest towards the ability of vinification practices to reduce 3MH loss during aging through the management of wine flavan-3-ols content.
In the present study, Lugana white wines obtained using different products for pre-fermentative fining (PVPP, vegetable proteins, potato proteins, casein), as well without any fining, were adjusted to 30 mg/L of free SO2, spiked with a known amount of 3MH and submitted to aging at 24°C in ermetically sealed vials in the presence of 7 mg/L of dissolved oxygen.  Flavanol content of must and wines was assessed by means of HPLC, whereas 3MH was analyzed after aging by means of GC-MS after derivatization with ethyl propiolate.
The type of fining induced significant differences in the content of must and wine flavan-3-ols, with combinations of PVPP and vegetable proteins giving the largest flavan-3-ol decrease compared to control. Upon aging, wines fined with combinations of PVPP and vegetable proteins resulted in reduced 3MH loss, highlighting the positive influence of certain types of fining on wine aroma stability. Conversely, larger 3MH losses were observed when pre-fermentative fining was conducted using casein.  
The results of these study highlights the importance of fine tuning pre-fermentative fining to increase wine aroma stability and shelf-life 

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Ugliano Maurizio1, Manara Riccardo1, Slaghenaufi Davide1, Massot Arnaud2 and Moine Virgine2

1Department of biotechnology, University of Verona 
2Biolaffort

Contact the author

Keywords

Fining, 3-mercaptohexanol (3MH), vegetable proteins, oxidation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Aspects concernant les relations entre quelques composantes de la biomasse viticole, en fonction de l’offre des ressources écologiques

Ecological resources represent vegetation factors, or even production factors, in quantitative expression. These, used by plants, transformed and organized according to their genetic program, become the material components of biomass. Subsequently, the ecological resources can be used as synthetic indicators of the ecological supply, necessary for the analysis of favorability for the understanding of ecosystems.

Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Favoring the formation of volatile compounds and their precursors in must and wine represent one of the principal goals during winemaking technology. In recent years, most attention has been placed on using glycosidases to enlarge the aroma profile of white wines. The effect of enzymes makes odorless glycosidically-bound precursors be converted into aromatic compounds. This paper focuses to study the influence of enzymes (pectolytic and β-glycosides) administered before alcoholic fermentation, even if most studies analyze their use in different winemaking stages. Two semi-aromatic varieties such as Fetească regală and Sauvignon blanc were chosen.

Climate change impacts on Douro Region viticulture and adaptation measures

Climate has a significant impact in the success of any agricultural system, with a direct influence on the crops suitability to a given region, interfering on yield and quality and also with the economic sustainability of the productive activity. In the Douro Demarcated Region (RDD), as in most regions of the Mediterranean climate, the scarce precipitation (33% has less than 600 mm per year), and your high variability, associated with high rates of evapotranspiration during the summer, is usually one of the fundamental factors that limit the grapevine development, as well as the production and quality of the harvest. Thus, facing the scenario in temperature changes for the next decades (1.5-2.5°C) and confirming the predictions of precipitation decreases and/or great variability in the occurrence of heat waves and intense rainfall, the consequences for slope stability in mountain viticulture and sustainability of all operations involved, are risks to be taken into account. In this way, a deepest and sustained knowledge regarding the adaptation measures to adverse environmental conditions is of a crucial importance, enabling a more efficient adaptation of plant growth conditions and the optimization of production and quality of the grapevines. The development of this work, carried out in two commercial vineyards, one located in Soutelo do Douro, São João da Pesqueira, Cima Corgo sub-region, and another located in Numão, Vila Nova de Foz Côa, Douro Superior sub-region, it seeks to establish a relationship between climatic elements and physiological, productive and qualitative parameters, as well as to evaluate the effectiveness of adaptation measures, including different types of deficit irrigation (2002-2019) and the application of shading nets (2019-2020) in the physiological, viticultural and oenological behavior in the Touriga Nacional and Moscatel Galego Branco varieties, respectively. The results showed that the application of deficit irrigation allowed to significantly reduce the impact of the adverse weather conditions at key moments in the development of the grapevine, particularly in the period immediately before veráison and maturation, reducing the negative effects on the physiological processes and productivity, without compromise the must quality parameters. On the other hand, the application of shading nets significantly reduced de leaves temperature, allowing to increase the water potential, stomatal conductance and photosynthetic rate of grapes, which was reflected in the yield increase in the 2nd year of the study. For the maturation indicators, higher levels of total acidity, malic acid and assimilable nitrogen were obtained. The last measure presents a huge potential, being essential to carry out more years of trials to obtain stronger conclusions in terms of production parameters, but also in characteristics as important as the grape ripening components and the organoleptic characteristics of wines.

Prevention of quercetin precipitation in red wines: a promising enzymatic solution

In this video recording of the IVES science meeting 2023, Simone Vincenzi (Department of agronomy, food, natural resources, animals and environment (DAFNAE), University of Padova, Italy) speaks about the prevention of quercetin precipitation in red wines with a promising enzymatic solution. This presentation is based on an original article accessible for free on OENO One.

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years.