IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Stability of 3-mercaptohexanol during white wine storage in relationship to must pre-fermentative fining

Stability of 3-mercaptohexanol during white wine storage in relationship to must pre-fermentative fining

Abstract

3-Mercaptohexanol (3MH) is a volatile thiol occurring in several white and red wines, where it can contribute to fruity attributes. Its content is typically high in wines from certain grape varieties, in particular Sauvignon blanc, where it is considered a varietal marker. The strong nucleophilic character of thiols makes 3MH rather unstable during wine storage, due to the presence of several strong electrophilic species. Among these electrophilics, those arising from the oxidation of flavan3-ols such as catechin and epi-catechin have been indicated as critical for 3MH stability. Accordingly, there is a generalized interest towards the ability of vinification practices to reduce 3MH loss during aging through the management of wine flavan-3-ols content.
In the present study, Lugana white wines obtained using different products for pre-fermentative fining (PVPP, vegetable proteins, potato proteins, casein), as well without any fining, were adjusted to 30 mg/L of free SO2, spiked with a known amount of 3MH and submitted to aging at 24°C in ermetically sealed vials in the presence of 7 mg/L of dissolved oxygen.  Flavanol content of must and wines was assessed by means of HPLC, whereas 3MH was analyzed after aging by means of GC-MS after derivatization with ethyl propiolate.
The type of fining induced significant differences in the content of must and wine flavan-3-ols, with combinations of PVPP and vegetable proteins giving the largest flavan-3-ol decrease compared to control. Upon aging, wines fined with combinations of PVPP and vegetable proteins resulted in reduced 3MH loss, highlighting the positive influence of certain types of fining on wine aroma stability. Conversely, larger 3MH losses were observed when pre-fermentative fining was conducted using casein.  
The results of these study highlights the importance of fine tuning pre-fermentative fining to increase wine aroma stability and shelf-life 

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Ugliano Maurizio1, Manara Riccardo1, Slaghenaufi Davide1, Massot Arnaud2 and Moine Virgine2

1Department of biotechnology, University of Verona 
2Biolaffort

Contact the author

Keywords

Fining, 3-mercaptohexanol (3MH), vegetable proteins, oxidation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Approche méthodologique concernant une caractérisation sensorielle de vins rouges de l’Anjou

Face à une concurrence de plus en plus rude entre pays producteurs, le vignoble de l’Anjou, déjà riche par sa diversité, souhaite renforcer sa logique de vins d’ A.O.C., notamment au travers de ses vins rouges.

A viticultural perspective of Meso-scale atmospheric modelling in the Stellenbosch wine growing area, South Africa

La brise de mer et les facteurs climatiques qu’elle entraîne (accélération de la vitesse du vent au cours de l’après midi, augmentation de l’humidité et baisse de la temperature) sont d’un intérêt particulier pour la viticulture.

UHPLC-HRMS analysis for the evaluation of formation and degradation of polysulfides in wine 

The contribution of sulfur compounds to wine aroma has been studied for several years, as their role can be either positive, contributing to the fruitiness and typicity of some white wines like Sauvignon blanc, or negative when related to off-flavours caused by H2S.

Phenology and maturation of Cabernet Sauvignon grapes from young vineyards at Santa Catarina state, Brazil – a survey of vineyard altitude and mesoclimat influences

Cabernet Sauvignon grapes from recently planted vines in Santa Catarina State (Brazil), were sampled during ripening from the 2005 and 2006 vintages.

What triggers the decision to ripen 

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening.