IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of maceration time and temperature on some bioactive compounds in Malvazija istarska white wines

Influence of maceration time and temperature on some bioactive compounds in Malvazija istarska white wines

Abstract

The rising trend of moderate wine consumption as a part of a healthy lifestyle promotes white wines with higher phenolic content because of their bioactive properties. Duration and temperature of the maceration process have a marked impact on the content and composition of wine phenolics. The aim of this study was to explore the effect of applying maceration processes of different durations and temperature on total phenolic content and flavan-3-ol compounds concentration of Malvazija istarska (Vitis vinifera L.) wines, an autochthonous Croatian white grape variety. Vinification took place at the Institute of Agriculture and Tourism (Poreč) where pre-fermentative two days cryomaceration treatment at 8 °C (CRYO), seven days maceration treatment at 16 °C (M7), and prolonged post-fermentative maceration treatments at 16 °C for 14 days (M14), 21 day (M21), and 42 days (M42) were studied and compared to non-maceration control treatment (C). Total phenolic content was determined by the Folin-Ciocalteu colorimetric method using a UV/VIS spectrophotometer and the results were expressed as gallic acid equivalents (mg/L GAE). The analysis of flavan-3-ols was carried out by high performance liquid chromatography (HPLC). Identification was performed by comparing retention times and spectra with those of pure standards. Procyanidins B1, B2, B3, C1, and (+)-catechin and (-)-epicatechin were identified in all wine samples. Statistical data analysis was performed using one-way analysis of variance (ANOVA) and Fischer’s least significant difference (LSD), while Pearson’s correlation was used to observe the relationship between total phenolic content and total flavan-3-ols. According to the obtained results, total phenolic content increased in all maceration treatments when compared to C treatment wine. The increase in total phenolic content was the highest in post-fermentative maceration treatments, M14 and M42. Total flavan-3-ol content showed a similar trend, also reaching the highest values in M14 and M42 treatment wines, while the lowest concentrations were observed in both C and CRYO treatments. A high positive correlation was observed between total phenolic content and total flavan-3-ols. When observing individual flavan-3-ol compounds, (-)-epicatechin reached the highest concentrations, especially in M42 treatment. Procyanidin B3 and C1 significantly increased only when 42 days maceration was applied, while shorter maceration durations or temperature did not affect the increase in these compounds. It can be concluded that the investigated phenolics highly depended on the maceration conditions applied. Additionally, the increase levels of bioactive phenols resulting from the application of the investigated maceration practices might attract those consumers interested in moderate white wine consumption for specific health reasons. The study was funded by the Croatian Scientific Foundation under the projects IP 2018-5049 and DOK-2020-01-1901.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bestulić Ena1, Rossi Sara1, Plavša Tomislav1, Horvat Ivana1, Lukić Igor1, Jeromel Ana2 and Radeka Sanja1

1Institute of Agriculture and Tourism
2University of Zagreb Faculty of Agriculture 

Contact the author

Keywords

Malvazija istarska white wine, maceration conditions, bioactive compounds, total phenols, flavan-3-ols

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress.

Effetti del cambiamento climatico europeo sulle epoche di vendemmia in Abruzzo

I dati termo-pluviometrici del periodo 1971-2009 registrati da alcune stazioni della regione Abruzzo sono stati analizzati adottando alcuni semplici indici climatici e bioclimatici. E’ stato valutato il verificarsi di cambiamenti climatici così come le loro ripercussioni sulle date di inizio vendemmia.

Méthodologie pour application et valorisation des études de terroir dans les caves cooperatives des Côtes du Rhône (France)

L’appellation d’origine contrôlée “Côtes du Rhône” se caractérise par une très forte implantation du mouvement coopératif. Afin de mieux exploiter le potentiel qualitatif de leurs terroirs, plusieurs coopératives élaborent des “cuvées terroir”, résultat des sélections de vendanges provenant de différents secteurs.

Organic Oregon: an emerging experience in terroir tourism

Emerging from anthropology, climatology, ecology, gastronomy, geography and wine tourism, terroir tourism has been recently recognized to have potential for developing rural agriculture tourism

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.