IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of maceration time and temperature on some bioactive compounds in Malvazija istarska white wines

Influence of maceration time and temperature on some bioactive compounds in Malvazija istarska white wines

Abstract

The rising trend of moderate wine consumption as a part of a healthy lifestyle promotes white wines with higher phenolic content because of their bioactive properties. Duration and temperature of the maceration process have a marked impact on the content and composition of wine phenolics. The aim of this study was to explore the effect of applying maceration processes of different durations and temperature on total phenolic content and flavan-3-ol compounds concentration of Malvazija istarska (Vitis vinifera L.) wines, an autochthonous Croatian white grape variety. Vinification took place at the Institute of Agriculture and Tourism (Poreč) where pre-fermentative two days cryomaceration treatment at 8 °C (CRYO), seven days maceration treatment at 16 °C (M7), and prolonged post-fermentative maceration treatments at 16 °C for 14 days (M14), 21 day (M21), and 42 days (M42) were studied and compared to non-maceration control treatment (C). Total phenolic content was determined by the Folin-Ciocalteu colorimetric method using a UV/VIS spectrophotometer and the results were expressed as gallic acid equivalents (mg/L GAE). The analysis of flavan-3-ols was carried out by high performance liquid chromatography (HPLC). Identification was performed by comparing retention times and spectra with those of pure standards. Procyanidins B1, B2, B3, C1, and (+)-catechin and (-)-epicatechin were identified in all wine samples. Statistical data analysis was performed using one-way analysis of variance (ANOVA) and Fischer’s least significant difference (LSD), while Pearson’s correlation was used to observe the relationship between total phenolic content and total flavan-3-ols. According to the obtained results, total phenolic content increased in all maceration treatments when compared to C treatment wine. The increase in total phenolic content was the highest in post-fermentative maceration treatments, M14 and M42. Total flavan-3-ol content showed a similar trend, also reaching the highest values in M14 and M42 treatment wines, while the lowest concentrations were observed in both C and CRYO treatments. A high positive correlation was observed between total phenolic content and total flavan-3-ols. When observing individual flavan-3-ol compounds, (-)-epicatechin reached the highest concentrations, especially in M42 treatment. Procyanidin B3 and C1 significantly increased only when 42 days maceration was applied, while shorter maceration durations or temperature did not affect the increase in these compounds. It can be concluded that the investigated phenolics highly depended on the maceration conditions applied. Additionally, the increase levels of bioactive phenols resulting from the application of the investigated maceration practices might attract those consumers interested in moderate white wine consumption for specific health reasons. The study was funded by the Croatian Scientific Foundation under the projects IP 2018-5049 and DOK-2020-01-1901.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bestulić Ena1, Rossi Sara1, Plavša Tomislav1, Horvat Ivana1, Lukić Igor1, Jeromel Ana2 and Radeka Sanja1

1Institute of Agriculture and Tourism
2University of Zagreb Faculty of Agriculture 

Contact the author

Keywords

Malvazija istarska white wine, maceration conditions, bioactive compounds, total phenols, flavan-3-ols

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Over the past 70 years, scientific literature has consistently illustrated the advantageous effects of arbuscular mycorrhiza fungi (AMF) on plant growth and stress tolerance. Recent reviews not only reaffirm these findings but also underscore the pivotal role of AMF in ensuring the sustainability of viticulture. In fact, various companies actively promote commercial inoculants based on AMF as biofertilizers or biostimulants for sustainable viticulture. However, despite the touted benefits of these products, the consistent effectiveness of AMF inoculants in real-world field conditions remains uncertain.

Mathematical models of the dynamics of fermentation of wine yeasts under the influence of vitamins

Biomass accumulation in yeast has been studied in this work in terms of their role in fermentation processes. So, biotin is involved in many reactions and nitrogen metabolism disorders

Soil and nutritional survey of Greek vineyards from the prefecture of Macedonia, Northern Greece, and from the island of Santorini

Vitis vinifera L. is one of the most important cultures for the soil and
climate conditions of Northern Greece and Santorini. However, very little information is provided with regard to its nutritional requirements and critical levels of nutrient deficiencies and toxicities. The aim of this study was to provide an integrated nutritional survey for the Greek conditions of wine and table varieties.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

Soil monoliths, soil variability and terroir

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.