IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Abstract

Favoring the formation of volatile compounds and their precursors in must and wine represent one of the principal goals during winemaking technology. In recent years, most attention has been placed on using glycosidases to enlarge the aroma profile of white wines. The effect of enzymes makes odorless glycosidically-bound precursors be converted into aromatic compounds. This paper focuses to study the influence of enzymes (pectolytic and β-glycosides) administered before alcoholic fermentation, even if most studies analyze their use in different winemaking stages. Two semi-aromatic varieties such as Fetească regală and Sauvignon blanc were chosen.
Identification and separation of volatile compounds were performed using an Agilent 7890A gas chromatography system coupled with a mass spectrometer detector 5975 C inert XL EI/CI MSD. The sensory profile of the wines was evaluated by a panel of 20 licensed tasters, consisting of 12 men and 8 women. Data processing and statistical representation (Principal Components Analysis, Anova, Fisher’s Least Significant Difference, Pearson correlation coefficient) was performed using Statgraphics® software 19.  
Following the analyses performed by gas chromatography, there were identified over 65 volatile compounds, depending on the grape variety. Fetească regală wines were described by higher proportions of ethyl octanoate (peach, pear, exotic fruits notes), 3-methylbutyl acetate (with fruity, pear, banana aroma), hexanoic acid (lactate, phenolic and exotic fruits odors), propan-2-yl acetate ethereal, ripe fruits, banana odor) and ethyl decanoate (floral, fruity, woody notes), while Sauvignon blanc wines were distinguished by considerable proportions of 2-methylpropan-1-ol (with spirits and solvent odor), 3-methylbutan-1-ol (banana, solvent notes), diethyl butanoate (fruity, floral, waxy, dusty odors), 1-phenylethanol (floral and honey flavors), and acetic acid (vegetal, rancid, sour perceptions). Numerous positive correlation were identified in both varieties, including propan-1-ol vs 3-methylbutan-1-ol, 3-methylbutyl acetate vs ethyl hexanoate and butan-1-ol vs octandecanoic acid in Fetească regală wines and diethyl butanoate vs 3-methylbutan-1-ol, ethyloctanoate vs propan-2-yl acetate, ethyl octanoate vs ethyl 4-hydroxybutanoate in Sauvignon blanc. Data confirmed a significant influence.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cotea Valeriu1, Scutarasu Elena Cristina1, Luchian Camelia Elena1, Colibaba Lucia Cintia1, Nagy Katalin2 and Trincă Lucia Carmen1

1Iași University of Life Sciences
2″Iuliu Hațieganu” University of Medicine and Pharmacy in Cluj-Napoca

Contact the author

Keywords

wines, enzymes, fermentation, volatile profile, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Selected ion flow tube mass spectrometry: a promising technology for the high throughput phenotyping of grape berry volatilome

Wine grapes breeding has been concentrating a lot of efforts within the grape research community over the last decade. The quick phenotyping of genotype quality traits including aroma composition remains challenging. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), a technology first available in 2008 and developing rapidly, could be particularly valuable for this usage. The aims of this study were i) to use SIFT-MS, to analyze the whole volatilome from different grape varieties, ii) to assess the ability of this technology to discriminate varieties according to their grape aroma composition, and iii) to study the stability of SIFT-MS signal over maturation to define a sampling strategy.

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

“Terroir” and “Great” zonation study regarding Istrian Malvasia, Porec Rosy Muscat and Momjan White Muscat (HR)

In a so called “Great” zonation, “terroir” study is of great importance also in aim of the best exploiting. In the present paper are shown results from the research in Istria with the aim of individuating the influence of soil

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.