IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Abstract

Favoring the formation of volatile compounds and their precursors in must and wine represent one of the principal goals during winemaking technology. In recent years, most attention has been placed on using glycosidases to enlarge the aroma profile of white wines. The effect of enzymes makes odorless glycosidically-bound precursors be converted into aromatic compounds. This paper focuses to study the influence of enzymes (pectolytic and β-glycosides) administered before alcoholic fermentation, even if most studies analyze their use in different winemaking stages. Two semi-aromatic varieties such as Fetească regală and Sauvignon blanc were chosen.
Identification and separation of volatile compounds were performed using an Agilent 7890A gas chromatography system coupled with a mass spectrometer detector 5975 C inert XL EI/CI MSD. The sensory profile of the wines was evaluated by a panel of 20 licensed tasters, consisting of 12 men and 8 women. Data processing and statistical representation (Principal Components Analysis, Anova, Fisher’s Least Significant Difference, Pearson correlation coefficient) was performed using Statgraphics® software 19.  
Following the analyses performed by gas chromatography, there were identified over 65 volatile compounds, depending on the grape variety. Fetească regală wines were described by higher proportions of ethyl octanoate (peach, pear, exotic fruits notes), 3-methylbutyl acetate (with fruity, pear, banana aroma), hexanoic acid (lactate, phenolic and exotic fruits odors), propan-2-yl acetate ethereal, ripe fruits, banana odor) and ethyl decanoate (floral, fruity, woody notes), while Sauvignon blanc wines were distinguished by considerable proportions of 2-methylpropan-1-ol (with spirits and solvent odor), 3-methylbutan-1-ol (banana, solvent notes), diethyl butanoate (fruity, floral, waxy, dusty odors), 1-phenylethanol (floral and honey flavors), and acetic acid (vegetal, rancid, sour perceptions). Numerous positive correlation were identified in both varieties, including propan-1-ol vs 3-methylbutan-1-ol, 3-methylbutyl acetate vs ethyl hexanoate and butan-1-ol vs octandecanoic acid in Fetească regală wines and diethyl butanoate vs 3-methylbutan-1-ol, ethyloctanoate vs propan-2-yl acetate, ethyl octanoate vs ethyl 4-hydroxybutanoate in Sauvignon blanc. Data confirmed a significant influence.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cotea Valeriu1, Scutarasu Elena Cristina1, Luchian Camelia Elena1, Colibaba Lucia Cintia1, Nagy Katalin2 and Trincă Lucia Carmen1

1Iași University of Life Sciences
2″Iuliu Hațieganu” University of Medicine and Pharmacy in Cluj-Napoca

Contact the author

Keywords

wines, enzymes, fermentation, volatile profile, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

Evolution of acetaldehyde concentration during wine alcoholic fermentation: online monitoring for production balances

During alcoholic fermentation, acetaldehyde is the carbonyl compound quantitatively the most produced by yeasts after ethanol. The dynamics of acetaldehyde production can be divided into 3 phases. Early formation of this compound is observed during the lag phase at the beginning of fermentation before any detectable growth [1].

Effect of nitrogen content on fermentation kinetics and aroma profile of assyrtiko wine

Today, there is need to design, produce and label terroir wines, with unique organoleptic properties and more “attractive to consumers”. For this purpose, two Saccharomyces cerevisiae yeast strains (Sa and Sb) isolated during spontaneous fermentations were used for white wine production from the Assyrtiko grape of Santorini. A third commercial strain was used as control.

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as

Histoire des Vitis depuis leurs origines possibles sur la Pangée jusqu’aux cépages cultivés : un exemple de résilience liée à la biodiversité des espèces

The first forms of life on earth were bacteria and single-celled blue-green algae. They evolved into land plants around 500 million years ago, developing mechanisms for surviving on land, such as roots, stems and leaves. This evolution also led them to coexist with other organisms, such as insects and animals, for pollination and seed dispersal, as well as to resist environmental factors such as drought and disease.