IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Abstract

Favoring the formation of volatile compounds and their precursors in must and wine represent one of the principal goals during winemaking technology. In recent years, most attention has been placed on using glycosidases to enlarge the aroma profile of white wines. The effect of enzymes makes odorless glycosidically-bound precursors be converted into aromatic compounds. This paper focuses to study the influence of enzymes (pectolytic and β-glycosides) administered before alcoholic fermentation, even if most studies analyze their use in different winemaking stages. Two semi-aromatic varieties such as Fetească regală and Sauvignon blanc were chosen.
Identification and separation of volatile compounds were performed using an Agilent 7890A gas chromatography system coupled with a mass spectrometer detector 5975 C inert XL EI/CI MSD. The sensory profile of the wines was evaluated by a panel of 20 licensed tasters, consisting of 12 men and 8 women. Data processing and statistical representation (Principal Components Analysis, Anova, Fisher’s Least Significant Difference, Pearson correlation coefficient) was performed using Statgraphics® software 19.  
Following the analyses performed by gas chromatography, there were identified over 65 volatile compounds, depending on the grape variety. Fetească regală wines were described by higher proportions of ethyl octanoate (peach, pear, exotic fruits notes), 3-methylbutyl acetate (with fruity, pear, banana aroma), hexanoic acid (lactate, phenolic and exotic fruits odors), propan-2-yl acetate ethereal, ripe fruits, banana odor) and ethyl decanoate (floral, fruity, woody notes), while Sauvignon blanc wines were distinguished by considerable proportions of 2-methylpropan-1-ol (with spirits and solvent odor), 3-methylbutan-1-ol (banana, solvent notes), diethyl butanoate (fruity, floral, waxy, dusty odors), 1-phenylethanol (floral and honey flavors), and acetic acid (vegetal, rancid, sour perceptions). Numerous positive correlation were identified in both varieties, including propan-1-ol vs 3-methylbutan-1-ol, 3-methylbutyl acetate vs ethyl hexanoate and butan-1-ol vs octandecanoic acid in Fetească regală wines and diethyl butanoate vs 3-methylbutan-1-ol, ethyloctanoate vs propan-2-yl acetate, ethyl octanoate vs ethyl 4-hydroxybutanoate in Sauvignon blanc. Data confirmed a significant influence.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cotea Valeriu1, Scutarasu Elena Cristina1, Luchian Camelia Elena1, Colibaba Lucia Cintia1, Nagy Katalin2 and Trincă Lucia Carmen1

1Iași University of Life Sciences
2″Iuliu Hațieganu” University of Medicine and Pharmacy in Cluj-Napoca

Contact the author

Keywords

wines, enzymes, fermentation, volatile profile, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The effect of management practices and landscape context on vineyard biodiversity

Intensification is considered one of the major drivers of biodiversity loss in farmland. The more intensive management practices that have been adopted the last decades, contributed to species declines from all taxonomic groups. Moreover, agricultural intensification has led to an important change of land use. Complex, mixed agro-ecosystems with cultivated and non-cultivated habitats have been converted to simplified, intensive and homogeneous ones with severe effects on biodiversity.

The influence of tertiary and quaternary deposits on the viticultural potential of the terroirs to be found in Geneva, Switzerland

The 1365 ha of the Genevese vineyard are located at the south-western corner of the Swiss plateau, between 395m and 505 m altitude.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Grape phylloxera meets drought: increased risk for vines under climate change?

Climate change is increasing the frequency and severity of drought periods leading to significant impacts on agro‐economic activities