IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wine oxidation study by accelerating ageing tests and electrochemical method

Abstract

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions.
In order to obtain information on the oxidative behavior of red wines, oxygen consumption rates and electrochemical modifications (obtained by cyclic voltammetry) were measured for nine red wines subject to three different accelerated ageing tests (after wine air saturation). Chemical test (hydrogen peroxide add), enzymatic test (laccase from Trametes versicolor add) and temperature test (heat at 60°C) were carried out. Global phenolic composition, metals (Fe and Cu) and free SO2 concentrations were also determined. 
The obtained results showed oxidative behavior depended both on the wine sample and accelerated ageing test type. Good correlations were obtained between electrochemical parameters (charges at different potentials related to reductive properties) for non-oxidized wines and their variation after enzymatic and temperature tests, meaning that cyclic voltammetry could be used in order to predict these two oxidation tests and reflect the wine sensitivity towards respective oxidation targets. To strengthen this, good correlations were also obtained between the electrochemical parameters of the initial wines and oxygen consumption rates for these two tests. However, it was not possible to predict wine chemical oxidation test based on hydrogen peroxide from the electrochemical measurements.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Garcia François1, Deshaies Stacy1, Garcia Luca1, Veran Frédéric2, Mouls Laetitia1 and Saucier Cédric1

1SPO-University of Montpellier
2SPO-INRAE Montpellier

Contact the author

Keywords

cyclic voltammetry; phenolic compounds; red wine; oxygen consumption rate; oxidation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The valorization of wine lees as a source of mannoproteins for food and wine applications

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1].

Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Biodiversity loss in agrosystems is partly due to landscape simplification (field enlargement, hedgerows removal…) that led to a loss of heterogeneity of the overall landscape.

Characterization of four Chenin Blanc-rootstock combinations to assess grapevine adaptability to water constraint

Climate change impacts water availability for agriculture, notably in semi-arid regions like South Africa, necessitating research on cultivar and rootstock adaptability to water constraints. To evaluate the performance (vegetative and reproductive) of different Chenin Blanc-rootstock combinations to the two water regimes, a field experiment was established in a model vineyard at Stellenbosch University, South Africa. Chenin Blanc vines grafted onto four different rootstocks (110Richter, 99Richter, 1103Paulsen and US 8-7) were planted in 2020. The vines are managed under two contrasting water conditions – dryland and irrigated (industry norm).

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult.