IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wine oxidation study by accelerating ageing tests and electrochemical method

Abstract

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions.
In order to obtain information on the oxidative behavior of red wines, oxygen consumption rates and electrochemical modifications (obtained by cyclic voltammetry) were measured for nine red wines subject to three different accelerated ageing tests (after wine air saturation). Chemical test (hydrogen peroxide add), enzymatic test (laccase from Trametes versicolor add) and temperature test (heat at 60°C) were carried out. Global phenolic composition, metals (Fe and Cu) and free SO2 concentrations were also determined. 
The obtained results showed oxidative behavior depended both on the wine sample and accelerated ageing test type. Good correlations were obtained between electrochemical parameters (charges at different potentials related to reductive properties) for non-oxidized wines and their variation after enzymatic and temperature tests, meaning that cyclic voltammetry could be used in order to predict these two oxidation tests and reflect the wine sensitivity towards respective oxidation targets. To strengthen this, good correlations were also obtained between the electrochemical parameters of the initial wines and oxygen consumption rates for these two tests. However, it was not possible to predict wine chemical oxidation test based on hydrogen peroxide from the electrochemical measurements.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Garcia François1, Deshaies Stacy1, Garcia Luca1, Veran Frédéric2, Mouls Laetitia1 and Saucier Cédric1

1SPO-University of Montpellier
2SPO-INRAE Montpellier

Contact the author

Keywords

cyclic voltammetry; phenolic compounds; red wine; oxygen consumption rate; oxidation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Climate change is increasing the frequency of water deficit in many grape-growing regions. Grapevine varieties differ in their stomatal behavior during water deficit, and their ability to regulate water potential under dry soil conditions is commonly differentiated using the concept of isohydricity. It remains unclear whether stomatal behavior, water potential regulation, and the resulting degree of isohydricity has a relationship with changes to fruit growth during water deficit. This study was conducted on four varieties (`Cabernet Franc`, `Semillon`, `Grenache`, and `Riesling`) subjected to both short-term, severe water deficit and long-term, moderate water deficit applied at both pre- and post-veraison.

Managing precision irrigation in vineyards: hydraulic and molecular signaling in eight grapevine varieties

Understanding the physiological and molecular bases of grapevine responses to mild to moderate water deficits is fundamental to optimize vineyard irrigation management and identify the most suitable varieties. In Mediterranean regions, the higher frequency of heat waves and droughts highlights the importance of precision irrigation to meet vine water demands and demonstrates the necessity for a deeper understanding of the different physiological responses among varieties under water stress. In this context, previous reports show an interplay between stomatal regulation of transpiration and changes in leaf hydraulic conductivity, also with the involvement of aquaporins (AQPs), particularly under water stress. However, how those signaling mechanisms are regulated in different grapevine varieties along phenological phases is unclear.

Recent observations in wine oxidation

The chemistry of wine oxidation is captured in the reactions between the oxidation products, mostly reactive electrophiles, with other wine constituents. An understanding of both components and their reactions can lead to ideas and techniques to control and mitigate or enhance these reactions to allow for the desired development of the wine. Current investigations are yielding much useful information about oxidation reactions in wine.

The aroma diversity of Italian white wines: a further piece added to the D-Wines project

The wide ampelographic heritage of the Italian wine grape varieties represents a richness in terms of biodiversity and potential market value.

Development of bioprospecting tools for oenological applications

Wine is the result of a complex biochemical process. From a microbiological point of view, the grape berry is characterised by a heterogeneous microbiota composed of different microorganisms (yeasts, bacteria and filamentous fungi) which will play a predominant role in the quality of the final product. At this level, yeasts play a predominant role in the chemistry of wine, as they